282 research outputs found

    Explaining Extreme Events of 2012 from a Climate Perspective

    Get PDF
    Attribution of extreme events is a challenging science and one that is currently undergoing considerable evolution. In this paper are 19 analyses by 18 different research groups, often using quite different methodologies, of 12 extreme events that occurred in 2012. In addition to investigating the causes of these extreme events, the multiple analyses of four of the events, the high temperatures in the United States, the record low levels of Arctic sea ice, and the heavy rain in northern Europe and eastern Australia, provide an opportunity to compare and contrast the strengths and weaknesses of the various methodologies. The differences also provide insights into the structural uncertainty of event attribution, that is, the uncertainty that arises directly from the differences in analysis methodology. In these cases, there was considerable agreement between the different assessments of the same event. However, different events had very different causes. Approximately half the analyses found some evidence that anthropogenically caused climate change was a contributing factor to the extreme event examined, though the effects of natural fluctuations of weather and climate on the evolution of many of the extreme events played key roles as well.Peer Reviewe

    Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Get PDF
    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution

    Is Landscape Context Important for Riparian Conservation? Birds in Grassy Woodland

    Get PDF
    An important challenge for riparian management is to determine the extent to which landscape context influences the faunal assemblages of riparian habitats. We examined this challenge in the variegated landscapes of southeastern Queensland, Australia where riparian vegetation is surrounded by both extensive grazing and intensive cropping. We investigated whether riparian habitats adjacent to different landuses support similar bird assemblages. Three types of riparian habitat condition were sampled (uncleared ungrazed; uncleared grazed; cleared grazed) in four different land-use contexts (ungrazed woodland; grazed woodland; native pasture; crop) although only six of the twelve possible treatment combinations were available. Eighty percent of bird species responded significantly to changes in both riparian habitat condition and landscape context, while fewer than 50% of species were significantly influenced by landscape context alone. The influence of landscape context on the bird assemblage increased as the surrounding land use became more intensive (e.g. woodland to native pasture to crop). Riparian zones have been shown to have consistently high biodiversity values relative to their extent. These findings suggest it is not enough to conserve riparian habitats alone, conservation and restoration plans must also take into consideration landscape context, particularly when that context is intensively used land
    corecore