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[1] Since 1950, the warmest and coldest days and nights
of the year have become warmer. Comparing these
observations with climate model simulations in an
optimal detection analysis shows a significant human
influence on patterns of change in extremely warm nights.
Human influence on cold nights and days is also detected,
although less robustly, but there is no detection of a
significant human influence on extremely warm days. In
the future, extreme temperatures are expected to intensify
considerably, with adverse consequences for human health.
Citation: Christidis, N., P. A. Stott, S. Brown, G. C. Hegerl,

and J. Caesar (2005), Detection of changes in temperature

extremes during the second half of the 20th century, Geophys.

Res. Lett., 32, L20716, doi:10.1029/2005GL023885.

1. Introduction

[2] There is growing evidence that human activity has
contributed to the observed warming near the surface of the
earth over the last 50 years [Hegerl et al., 1997; Tett et al.,
1999, 2002; Stott et al., 2000]. The Intergovernmental Panel
on Climate Change (IPCC) Third Assessment Report (TAR
[Intergovernmental Panel on Climate Change, 2001]) con-
cluded that changes in greenhouse gas concentrations were
likely to have been the dominant contributor. Since the
TAR, additional evidence has supported and strengthened
this conclusion [International ad hoc Detection and
Attribution Group (IDAG), 2005]. Human influence has
been detected on a wide range of climate variables and
detection and attribution analyses have been extended to
show significant anthropogenic effects at regional scales
[Zwiers and Zhang, 2003; Karoly et al., 2003; Stott, 2003].
The analysis of regional changes and extremes is potentially
of great importance for assessing societal impacts of climate
change.
[3] While many detection and attribution studies have

analysed the control exerted on mean temperatures by
external forcings [IDAG, 2005] and the importance of
human influence on extremes has been shown [Kiktev et
al., 2003], the formal attribution of changes in extremes has
yet to be made. The lack of high quality observational data
sets of daily temperature with good coverage has posed a
major hindrance. Moreover, the definition of indices suit-
able for detection is not straightforward. An alternative

approach would be to infer changes in extremes implicitly
from changes in longer term means, by assuming that the
tail of the distribution changes in accordance with the mean.
However this assumption was found not valid, with changes
in extreme near surface temperature being significantly
different than seasonal mean changes [Klein Tank and
Können, 2003; Hegerl et al., 2004] over a large fraction
of the globe. Our aim here is to apply for the first time a
standard optimal detection approach to patterns of change in
temperature extremes, in order to investigate the anthropo-
genic influence in the observed warming, using a formal
methodology.

2. Detection Indices for Temperature Extremes

[4] A great variety of indices has been developed for the
study of climatic extremes, as a result of an international
effort to provide a common benchmark to the analysis of
such events [Folland et al., 1999; Nicholls and Murray,
1999]. Comparisons between temperature index values from
observations and models in early analyses showed reason-
able consistency [Kiktev et al., 2003]. The indices used here
describe changes in the N warmest days and nights of the
year (N = 30, 10, 5 and 1), sampling the shift from moderate
to more pronounced extreme events. We focus especially on
warm nights because of their impact on human health.
Sustained night time high temperatures are characteristic
of the most severe heat waves, which contribute to in-
creased discomfort and mortality rates [Karl and Knight,
1997; Meehl and Tebaldi, 2004; Trigo et al., 2005].
[5] The same set of indices was employed previously in a

perfect model study [Hegerl et al., 2004], which showed
that changes in extremes are detected in synthetic model
observations at the time when CO2 is expected to double or
triple relative to pre-industrial times. That work also sug-
gested that changes over global land may already be
detectable in 20-year trends. We now aim to establish
whether we can detect changes as early as in the second
half of the 20th century, when the signal may not have
sufficiently intensified, and for signal comparison against
real observations, which cover only 48% of the global land
masses.

3. Observations and Model Data

[6] The observations are gridded daily data of maximum
and minimum temperature from a newly compiled dataset
(J. Caesar et al., Large-scale changes in observed daily
maximum and minimum temperatures, 1946–2000, submit-
ted to Journal of Geophysical Research, 2005), covering
land areas, mainly over the N. Hemisphere and Australia.
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Station data have not been homogenised, so that genuine
climatic shifts will not inadvertently be adjusted, while
erroneous extremes have been checked and filtered. This
new dataset provides the first opportunity to analyse quasi-
global daily data. Model data came from runs with HadCM3,
the 3rd generation Hadley Centre Atmosphere Ocean Gen-
eral Circulation Model [Gordon et al., 2000; Pope et al.,
2000; Stott et al., 2000]. Four model experiments were
considered [Johns et al., 2002], forced with: a) changes in
well-mixed greenhouse gases (GHG), b) changes in well-
mixed greenhouse gases, tropospheric and stratospheric
ozone and sulphate aerosols with their indirect effect taken
into account (ANTHRO), c) changes in volcanic aerosols
and in the solar output (NAT), and d) the combined effect of
ANTHRO and NAT (ALL). A control simulation was also
used to provide estimates of natural climate variability.
[7] The detection signals comprise spatial (2-D) response

patterns, constructed as the change in the period mean index
between periods 1950–1969 and 1980–1999. To minimise
the impact of internal climate variability on the model

response, we used the ensemble mean of the model signals
to form the model patterns. A comparison between obser-
vation and model patterns of change for the warmest night
of the year is shown in Figure 1. The observations
(Figure 1a) show a global mean increase in the warmest
night, with large regional variations, while the model
response to all forcings (Figure 1b) shows a more uniform
warming pattern. This discrepancy is expected, since the
observations show a strong imprint of internal climate
variability that is reduced by ensemble averaging of the
model simulations. The model response to natural forcings
only (Figure 1c) is negative in the global mean, with large
regional variations. Like the warmest night of the year, all
the other indices under investigation also indicated a warm-
ing during the last 50 years of the 20th century, in both
observations and experiments which include the greenhouse
gas forcing and a cooling in experiments with natural
forcings only.

4. Analysis

[8] Our analysis used a formal optimal detection tech-
nique to assess in an objective way how well the model
response patterns match the observations. Optimal detection
is a generalised multivariate regression, extensively used in
the detection of climate change and its attribution to
external forcings [Hasselmann, 1979; Allen and Tett,
1999]. The aim is to estimate scaling factors that are applied
to the model fingerprints in order to best match the
observations, given a model estimate of the internal climate
variability. We used 39 control segments (20 non-over-
lapping) to construct the covariance matrix of the internal
climate variability and 19 additional segments (10 non-
overlapping) to estimate the uncertainty in the scaling
factors. A power spectra analysis of detrended global
indices timeseries for observations and 30 non-overlapping
control segments indicates HadCM3 provides an adequate
representation of internal climate variability. Most discrep-
ancy appears at interdecadal timescales for indices of cold
extremes, suggesting that the model may underestimate
variability in these cases. We restricted the analysis to the
sub-space of the noise covariance defined by the 20 leading
eigenvectors, as this truncation was found to satisfy pre-
scribed criteria for the majority of the indices [Allen and
Tett, 1999]. The results are insensitive to the exact level of
truncation. Scaling factors consistent with zero imply no
detection, whereas values consistent with unity and with a
small uncertainty range imply a good match between model
and observations. Our detection algorithm has been previ-
ously used in numerous investigations [Tett et al., 1999,
2002; Stott, 2003; Stott et al., 2004] and its details are
discussed elsewhere [Allen and Stott, 2003]. Gillett et al.
[2000] found that changes in the N. Hemisphere circulation
had no adverse impact on the detection of changes in
temperature and it is assumed that this also holds true for
analyses of temperature extremes.
[9] Scaling factors for various applications of the optimal

detection technique together with the associated 5–95%
uncertainty range are depicted in Figure 2. We first concen-
trate on changes in the warm nights (Figure 2a). The
leftmost panel of Figure 2a shows the scaling factors from
a single fingerprint detection analysis with spatial response

Figure 1. Patterns of change in the warmest night of the
year for a late period (1980–1999) relative to an early
period (1950–1969) of the second half of the 20th century
from a) observations and model experiments with
b) anthropogenic and natural forcings and c) natural
forcings only. The model patterns are the average of four
ensemble members.
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patterns from different experiments and for indices of
different extremity. Apart from changes in the N warmest
days of the year, changes in the seasonal mean were also
considered. In all cases, the warming trend is detected in the
observations when greenhouse gas emissions are taken into
account. GHG generates more warming than the observa-
tions, due to the absence of the negative sulphate aerosol
and volcanic forcings and is assigned a scaling factor less
than one, to account for the excess warming. ANTHRO and
ALL experiments have scaling factors that are consistent
with unity for the more pronounced extreme indices. Warm-
ing in the seasonal mean is overestimated by the model,
whereas extreme changes seem to be modelled better than
seasonal changes. NAT experiments, not shown here, have
negative scaling factors and large uncertainties, indicating
an opposite response (cooling) to the observations. As the
results are similar for different extreme indices, as expected
from [Hegerl et al., 2004], we will henceforth focus solely
on changes in the most extreme annual record.
[10] We have applied our detection analysis also to

spatio-temporal (3-D) response patterns, as an alternative
signal definition that allows us to represent its evolution in
more detail. The patterns in this case are constructed as the

five decadal mean index anomaly values for the five
decades in the segment 1950–1999, and the anomalies are
relative to the segment mean. The middle panel of Figure 2a
shows that 3-D patterns are also detected in the observa-
tions, even though they are assigned smaller scaling factors.
When all forcings are included, the scaling factor is con-
sistent with unity. The rightmost panel of Figure 2a gives an
example of a multi-fingerprint analysis, where the model
response is represented by the linear combination of the
ANTHRO and NAT 3-D patterns. Such an analysis attempts
to partition the response between the two components and is
therefore useful for attribution purposes. As in the single-
fingerprint case, the ANTHRO patterns are detected in the
observations, whereas the NAT scaling factor is associated
with a large uncertainty range. The high uncertainty could
imply that the signal is dominated by the ANTHRO
response, which makes it difficult to separate the smaller
NAT contribution from the internal climate variability.
[11] Scaling factors for all types of indices are plotted in

Figure 2b. Results are shown for 3-D response patterns and
again only for the change in the most extreme annual value.
Apart from warm days, the response patterns for all other
types of indices are detected in the observations, for model
runs that include the greenhouse gas forcing. Daily mini-
mum temperatures are known to have risen faster than daily
maximum temperatures [Braganza et al., 2004; Stone and
Weaver, 2002], which may in part explain why changes in
warm day extremes are not detected, without, however,
explaining the difference between cold days and warm days.
The scaling factors for cold days and nights are close to unity
for GHG and increase significantly when anthropogenic
aerosol forcing is included, suggesting that aerosols cause
too much cooling in the model, although it is also possible
that there are confounding errors with the model’s green-
house gas response. An analysis of 2-D patterns for cold
days gives large scaling factor increases between ANTHRO
and ALL. This discrepancy suggests that when taking the
difference between period means some of the cooling in
ANT is lost, while the cooling in ALL from natural forcing is
exacerbated. As all the forcings are variable with time, the
use of 3-D patterns is deemed the most appropriate.

5. Warm Night Trends

[12] The change in the annual mean and area averaged
temperature anomaly for the warmest night of the year,
relative to the 1950–1959 mean, is illustrated in Figure 3.
The warming trend in the observations during the second
half of the 20th century is also captured in the ALL runs,
while simulations with natural forcings only give an oppo-
site trend. The warming of about 1 K in the end of the 20th
century shows a manifold increase over the 21st century
under the SRES A2 scenario and grows to about 7 K by
2100. Such a scale of change would not only increase the
intensity of heat waves in areas that already experience
them, but also their frequency in areas where such events
are currently uncommon.

6. Conclusions

[13] Our analysis demonstrates the early detection of a
significant anthropogenic influence in temperature extremes

Figure 2. Scaling factors and their 5–95% uncertainty
range from the optimal detection analysis. a) Changes in the
N warmest nights (N = 30, 10, 5 and 1) and in the boreal
summer (JJA) mean of the daily minimum temperature from
a single fingerprint analysis with 2-D patterns (left panel)
and 3-D patterns (middle panel, warmest night only). Results
from a two-fingerprint (ANTHRO and NAT) analysis with
3-D patterns are also shown (right panel, warmest night
only). b) Changes in the most extreme day and night of the
year from a single fingerprint analysis with 3-D patterns.
Single fingerprint analyses used patterns from 3 different
HadCM3 experiments (ALL, ANTHRO and GHG).
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with the exception of changes in warm days. The model
appears to overestimate the warming in the warm nights and
underestimate the warming in cold days and nights (3-D
patterns of change). Although the model changes do not
exactly match the observations, they are in both cases
significantly different than the model estimate of variability
generated internally within the climate system.
[14] For the number of indices considered here, it is for

the ones that describe the warm nights that we can make the
most robust attribution statement. Response patterns for
warm nights are always detectable and yield scaling factors
which have a relatively small uncertainty range and are not
as strongly dependent on the way the pattern was defined, as
in cold extremes. Previous work [Meehl and Tebaldi, 2004]
has shown that both models and observations agree that heat
waves have intensified, while model projections warn that
they will continue to do so. Our findings are complemen-
tary, indicating that changes in the warm nights are fortu-
itously the easiest to detect, at least among the indices we
examined. The 21st century model projection shows a
manifold increase in the warming of the warmest night of
the year.
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Figure 3. Temperature anomalies (relative to the 1950–
1959 mean) of the warmest night of the year over the area
covered by the observations. Shown are observed tempera-
tures (black thick line), modelled temperatures from four
HadCM3 simulations with both anthropogenic and natural
forcings (red lines) and natural forcings only (blue lines).
Temperatures after 2000 (orange line) come from a
HadCM3 run with greenhouse gas and sulphur emissions
that follow the SRES A2 scenario [Nakicenovic and Swart,
2000].
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