109 research outputs found

    Intestinal model of Inflammation in primary cells

    Get PDF
    The gastrointestinal tract contains an enormous mucosal surface, which is continuously exposed to antigens hence making it susceptible to an inflammatory response. Such response targets potential pathogens by direct activation of the mucosal immune cells, however, in newborns the continuous inflammation attacks the intestine which leads to induction of necrotising enterocolitis. The present study aims at developing an “in-vitro” intestinal model of inflammation to assist in understanding the complex interplay of pro-inflammatory mediators during the immune response in neonates. Segments (1.5cm length) from the ileum were obtained from SD rat neonates (1-4 days old) and exposed to 0.25% trypsin/EDTA for 30min. Following trituration and subsequent centrifugation for 5min at 450xg, cells were suspended in DMEM-Hepes supplemented with 10% FCS, 2.5% Penicillin/Streptomycin, 2.5% L-Glutamine, and 0.2% Amphotericin B. Cell suspension were transferred to culture flaks and incubated at 37°C. Once confluent, the cell preparation media was replaced by FCS-free media, and treated with 0, 10, 50, and 100'g/ml of LPS. IL-8 and nitric oxide (NO) response were subsequently measured. In separate studies cell proliferation, cell viability, and cell adhesion were analysed. Additionally, the phenotypic properties of the intestinal muscle cells were also investigated via immunocytochemistry. Initial studies demonstrated that LPS treatments induced a significant increase in the release of IL-8 and NO compared to controls. The effect of LPS treatments on cell dynamics demonstrated small changes in cell viability and adhesion, whereas an increase in cell proliferation was observed. Immunocytochemistry studies indicated that LPS treatment caused a decrease in the expression of actin fibers with impaired distribution compared to controls. In the present model key aspects of intestinal inflammation were replicated “in-vitro” including the activation of pro-inflammatory mediators, the loss in enteric innervations and subsequent tissue hyperplasia. Thus, this model may be used as a tool to investigate the anti-inflammatory properties of candidate drugs targeting functional GI diseases

    Serum levels of leptin and adiponectin and clinical parameters in women with fibromyalgia and overweight/obesity

    Get PDF
    ABSTRACT Objectives The objectives of this study were to evaluate the serum levels of adipokines in women with fibromyalgia with and without overweight/obesity, and to correlate the adipokines levels with clinical parameters associated with fibromyalgia and adipose tissue mass (body fat). Subjects and methods The study included 100 women divided into four groups: (a) fibromyalgia and overweight/obesity; (b) fibromyalgia and normal weight; (c) controls and overweight/obesity; and (d) controls and normal weight. Patients and controls were evaluated for clinical, anthropometric, and fibromyalgia-related parameters. Assessments included serum levels of leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), and C-reactive protein (CRP). Levels of adipokines were further adjusted for fat mass. Results Fibromyalgia patients with overweight/obesity or normal weight had no differences in clinical parameters. Unadjusted leptin levels were lower in fibromyalgia patients than controls, a finding that was more remarkable in fibromyalgia patients with overweight/obesity. Leptin levels had no correlation with clinical parameters of fibromyalgia or inflammation markers (MCP-1 and CRP), and adiponectin levels showed no difference between groups. Conclusions No correlation was observed between adjusted leptin levels and clinical parameters of fibromyalgia. Patients with fibromyalgia and overweight/obesity presented lower levels of leptin than controls with overweight/obesity

    Efeito de gramíneas forrageiras sobre a germinação carpogênica de Sclerotinia sclerotiorum e atividade microbiana no solo.

    Get PDF
    Estudaram-se o efeito do cultivo de Brachiaria spp. (B. ruziziensis, B. brizantha cv. Piatã, B. humidicola cv. Tupi, acessos B4, B6 e H1), Panicum maximum (P. maximum cvs. Tanzânia e Massai, acessos PM32, PM36, PM45 e PM46), milheto e pousio sobre a germinação carpogênica de Sclerotinia sclerotiorum e a atividade microbiana no solo

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era

    Full text link
    The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach (QG-MM)", in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.Comment: Submitted to CQG for the Focus Issue on "Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives". Please contact us to express interesst of endorsement of this white pape

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
    corecore