109 research outputs found

    A Community-Based Sensor Network for Monitoring the Air Quality in Urban Romania

    Get PDF
    Air quality, especially particulate matter pollution levels in urban areas, is an essential academic and social topic due to its association with health issues and climate change. In Romania, increasing awareness of urban communities and the availability of low-cost sensors has led to the development of an independent monitoring network currently distributed in over 194 cities and towns. The uRADMonitor((R)) network consists of 630 sensors measuring PM10 and PM2.5 concentration levels. The spatial distribution of the sensors complements the national air quality network with sensors in residential areas, intense traffic zones, and industrial areas. The data are available through a user-friendly web-based platform from uRADMonitor((R)). Based on data collected in 2021, we present an analysis of PM10 pollution levels in Romania's five most populated urban areas by employing five annual statistical indicators recommended by the European Environmental Agency. For the case of Timis,oara, we also compare the data measured by independent sensors with those from the national monitoring network. The results highlight the usefulness of our community-based network as it complements the national one

    Forecast B-modes detection at large scales in presence of noise and foregrounds

    Full text link
    We investigate the detectability of the primordial CMB polarization B-mode power spectrum on large scales in the presence of instrumental noise and realistic foreground contamination. We have worked out a method to estimate the errors on component separation and to propagate them up to the power spectrum estimation. The performances of our method are illustrated by applying it to the instrumental specifications of the Planck satellite and to the proposed configuration for the next generation CMB polarization experiment COrE. We demonstrate that a proper component separation step is required in order achieve the detection of B-modes on large scales and that the final sensitivity to B-modes of a given experiment is determined by a delicate balance between noise level and residual foregrounds, which depend on the set of frequencies exploited in the CMB reconstruction, on the signal-to-noise of each frequency map, and on our ability to correctly model the spectral behavior of the foreground components. We have produced a flexible software tool that allows the comparison of performances on B-mode detection of different instrumental specifications (choice of frequencies, noise level at each frequency, etc.) as well as of different proposed approaches to component separation.Comment: 7 pages, 2 tables, 1 figure, accepted by MNRA

    The Parkes Galactic Meridian Survey (PGMS): observations and CMB polarization foreground analysis

    Get PDF
    We present observations and CMB foreground analysis of the Parkes Galactic Meridian Survey (PGMS), an investigation of the Galactic latitude behaviour of the polarized synchrotron emission at 2.3 GHz with the Parkes Radio Telescope. The survey consists of a 5-deg wide strip along the Galactic meridian l=254-deg extending from Galactic plane to South Galactic pole. We identify three zones distinguished by polarized emission properties: the disc, the halo, and a transition region connecting them. The halo section lies at latitudes |b| > 40-deg and has weak and smooth polarized emission mostly at large scale with steep angular power spectra of median slope βmed2.6\beta_{\rm med} \sim -2.6. The disc region covers the latitudes |b|<20-deg and has a brighter, more complex emission dominated by the small scales with flatter spectra of median slope βmed=1.8\beta_{\rm med} = -1.8. The transition region has steep spectra as in the halo, but the emission increases toward the Galactic plane from halo to disc levels. The change of slope and emission structure at b \sim -20\degr is sudden, indicating a sharp disc-halo transition. The whole halo section is just one environment extended over 50-deg with very low emission which, once scaled to 70GHz, is equivalent to the CMB B-Mode emission for a tensor-to-scalar perturbation power ratio r_halo = 3.3 +/- 0.4 x 10^{-3}. Applying a conservative cleaning procedure, we estimate an r detection limit of δr2×103\delta r \sim 2\times 10^{-3} at 70~GHz (3-sigma C.L.) and, assuming a dust polariztion fraction <12%, δr1×102\delta r \sim 1\times 10^{-2} at 150~GHz. The 150-GHz limit matches the goals of planned sub-orbital experiments, which can therefore be conducted at this high frequency. The 70-GHz limit is close to the goal of proposed next generation space missions, which thus might not strictly require space-based platforms.Comment: 23 pages, 22 Figures. Accepted for publication on MNRAS. Some figures have been reduced in resolution. Replaced with the accepted version, 3 figures, more details on instrument performances, and map of polarization spectral index adde

    Maximum likelihood, parametric component separation and CMB B-mode detection in suborbital experiments

    Full text link
    We investigate the performance of the parametric Maximum Likelihood component separation method in the context of the CMB B-mode signal detection and its characterization by small-scale CMB suborbital experiments. We consider high-resolution (FWHM=8') balloon-borne and ground-based observatories mapping low dust-contrast sky areas of 400 and 1000 square degrees, in three frequency channels, 150, 250, 410 GHz, and 90, 150, 220 GHz, with sensitivity of order 1 to 10 micro-K per beam-size pixel. These are chosen to be representative of some of the proposed, next-generation, bolometric experiments. We study the residual foreground contributions left in the recovered CMB maps in the pixel and harmonic domain and discuss their impact on a determination of the tensor-to-scalar ratio, r. In particular, we find that the residuals derived from the simulated data of the considered balloon-borne observatories are sufficiently low not to be relevant for the B-mode science. However, the ground-based observatories are in need of some external information to permit satisfactory cleaning. We find that if such information is indeed available in the latter case, both the ground-based and balloon-borne experiments can detect the values of r as low as ~0.04 at 95% confidence level. The contribution of the foreground residuals to these limits is found to be then subdominant and these are driven by the statistical uncertainty due to CMB, including E-to-B leakage, and noise. We emphasize that reaching such levels will require a sufficient control of the level of systematic effects present in the data.Comment: 18 pages, 12 figures, 6 table

    Generating the curvature perturbation at the end of inflation

    Full text link
    The dominant contribution to the primordial curvature perturbation may be generated at the end of inflation. Taking the end of inflation to be sudden, formulas are presented for the spectrum, spectral tilt and non-gaussianity. They are evaluated for a minimal extension of the original hybrid inflation model.Comment: 5 pages. v3: as it will appear in JCA

    Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface

    Full text link
    We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure

    Single-cell, whole-embryo phenotyping of mammalian developmental disorders

    Get PDF
    Mouse models are a critical tool for studying human diseases, particularly developmental disorders. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution

    Mid-infrared near-field spectroscopy

    No full text

    Carotenoid Radical Cations as a Probe for the Molecular Mechanism of Nonphotochemical Quenching in Oxygenic Photosynthesis.

    No full text
    Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car•+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car•+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (β-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio•+) band at 909 nm and the Zea•+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car•+ signal observed previously during qE was detected in the spectral range investigated (800−1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered
    corecore