We investigate the detectability of the primordial CMB polarization B-mode
power spectrum on large scales in the presence of instrumental noise and
realistic foreground contamination. We have worked out a method to estimate the
errors on component separation and to propagate them up to the power spectrum
estimation. The performances of our method are illustrated by applying it to
the instrumental specifications of the Planck satellite and to the proposed
configuration for the next generation CMB polarization experiment COrE. We
demonstrate that a proper component separation step is required in order
achieve the detection of B-modes on large scales and that the final sensitivity
to B-modes of a given experiment is determined by a delicate balance between
noise level and residual foregrounds, which depend on the set of frequencies
exploited in the CMB reconstruction, on the signal-to-noise of each frequency
map, and on our ability to correctly model the spectral behavior of the
foreground components. We have produced a flexible software tool that allows
the comparison of performances on B-mode detection of different instrumental
specifications (choice of frequencies, noise level at each frequency, etc.) as
well as of different proposed approaches to component separation.Comment: 7 pages, 2 tables, 1 figure, accepted by MNRA