156 research outputs found

    Can We Do Away With PTBD?

    Get PDF
    Percutaneous Transhepatic Biliary Drainage (PTBD) is performed in surgical jaundice to decompress the biliary tree and improve hepatic functions. However, the risk of sepsis is high in these patients due to immunosuppression and surgical outcome remains poor. This raises a question—can we do away with PTBD? To answer this query a study was carried out in 4 groups of patients bearing in mind the high incidence of sepsis and our earlier studies, which have demonstrated immunotherapeutic potential of Tinospora cordifolia (TC): (A) those undergoing surgery without PTBD (n = 14), (B) those undergoing surgery after PTBD (n = 13). The mortality was 57.14% in Group A as compared to 61.54% in Group B. Serial estimations of bilirubin levels carried out during the course of drainage (3 Wks) revealed a gradual and significant decrease from 12.52 ± 8.3 mg% to 5.85 ± 3.0 mg%. Antipyrine half-life did not change significantly (18.35 ± 4.2 hrs compared to basal values 21.96 ± 3.78 hrs). The phagocytic and intracellular killing (ICK) capacities of PMN remained suppressed (Basal: 22.13 ± 3.68% phago, and 19.1 ± 4.49% ICK; Post drainage: 20 ± 8.48% Phago and 11.15 ± 3.05% ICK). Thus PTBD did not improve the metabolic capacity ofthe liver and mortality was higher due to sepsis. Group (C) patientg received TC during PTBD (n = 16) and Group (D) patients received TC without PTBD (n = 14). A significant improvement in PMN functions occurred by 3 weeks in both groups (30.29 ± 4.68% phago, 30 ± 4.84% ICK in Group C and 30.4 ± 2.99% phago, 27.15 ± 6.19% ICK in Group D). The mortality in Groups C and D was 25% and 14.2% respectively during the preoperative period. There was no mortality after surgery. It appears from this study that host defenses as reflected by PMN functions play an important role in influencing prognosis. Further decompression of the biliary tree by PTBD seems unwarranted

    Biogeography of the water flea Daphnia O. F. Müller (Crustacea: Branchiopoda: Anomopoda) on the Indian subcontinent

    Get PDF
    © 2016, Journal of Limnology. All rights reserved.Studies on Daphnia distribution in Indian subcontinent have been few and regionally restricted despite Daphnia being by far the most studied cladoceran. We here present a first biogeographical assessment of the genus on the Indian subcontinent (Afghanistan, Pakistan, India, Nepal, Bhutan, Bangladesh and Sri Lanka). We collected all pertinent literature and considered nineteen bioclimatic variables along with latitude, longitude, and altitude for statistical analysis of factors governing distribution in space. Significant variables (determined by Kruskal Wallis test) were tested by nonparametric multivariate analysis of variance (PERMANOVA) to clarify whether Daphnia species had specific environmental requirements. Canonical correspondence analysis was used to understand how environmental variables affected distribution. Eight Daphnia (Ctenodaphnia) and 4 Daphnia s.str. occurred at 100 different localities. The variables temperature, altitude and latitude differed among species and so did their bio-climatic requirements. Daphnia distribution responded positively to altitude and negatively to a decrease in latitude and temperature. We confirm the existence of three complexes of Daphnia in the Indian subcontinent: i) widely distributed species and species complexes; ii) high altitude endemics; and iii) low latitude D. (Ctenodaphnia) species

    Emblica Officinalis: A Novel Therapy for Acute Pancreatitis — An Experimental Study

    Get PDF
    Acute necrotising pancreatitis is associated with an unacceptably high mortality for which no satisfactory remedy exists. Emblica officinalis (E.o.) is a plant prescribed in Ayurveda, the Indian traditional system of medicine, for pancreas-related disorders. This study was carried out to evaluate the protective effect of E.o. against acute necrotising pancreatitis in dogs. Pancreatitis was induced by injecting a mixture of trypsin, bile and blood into the duodenal opening of the pancreatic duct. Twenty eight dogs were divided into 4 groups (n = 6-8 each): GpI–control, GpII–acute pancreatitis, GpIII–sham-operated, GpIV–pretreatment with 28 mg E.o./kg/day for 15 days before inducing pancreatitis. Serum amylase increased from 541.99 ± 129.13 IU/ml to 1592.63 ± 327.83 IU (p<0.02) 2 hrs after the induction of pancreatitis in GpII. The rise in serum amylase in both GpIII and GpIV was not significant. On light microscopic examination, acinar cell damage was less and the total inflammatory score was significantly lower in the E.o. treated group as compared to GpII. Electron microscopy confirmed this and showed an increased amount of smooth, endoplasmic reticulum and small, condensed granules embedded in a vacuole. More studies are needed to explore the clinical potential of E.o. and its mechanism of action

    Egg Laying Decisions in Drosophila Are Consistent with Foraging Costs of Larval Progeny

    Get PDF
    Decision-making is defined as selection amongst options based on their utility, in a flexible and context-dependent manner. Oviposition site selection by the female fly, Drosophila melanogaster, has been suggested to be a simple and genetically tractable model for understanding the biological mechanisms that implement decisions [1]. Paradoxically, female Drosophila have been found to avoid oviposition on sugar which contrasts with known Drosophila feeding preferences [1]. Here we demonstrate that female Drosophila prefer egg laying on sugar, but this preference is sensitive to the size of the egg laying substrate. With larger experimental substrates, females preferred to lay eggs directly on sugar containing media over other (plain, bitter or salty) media. This was in contrast to smaller substrates with closely spaced choices where females preferred non-sweetened media. We show that in small egg laying chambers newly hatched first instar larvae are able to migrate along a diffusion gradient to the sugar side. In contrast, in contexts where females preferred egg laying directly on sugar, larvae were unable to migrate to find the sucrose if released on the sugar free side of the chamber. Thus, where larval foraging costs are high, female Drosophila choose to lay their eggs directly upon the nutritious sugar substrate. Our results offer a powerful model for female decision-making

    Mahseer (Tor spp.) fishes of the world: status, challenges and opportunities for conservation.

    Get PDF
    The mahseer fishes (Tor spp.) represent an iconic genus of large-bodied species of the Cyprinidae family. Across the 16 recognised species in the genus, individual fish can attain weights over 50 kg, resulting in some species being considered as premier sport fishes. Tor species also generally have high religious and cultural significance throughout South and Southeast Asia. Despite their economic and cultural importance, the status of Tor fishes has been increasingly imperilled through their riverine habitats being impacted by anthropogenic activities, such as hydropower dam construction and exploitation. Moreover, conservation efforts have been constrained by knowledge on the genus being heavily skewed towards aquaculture, with considerable knowledge gaps on their taxonomy, autecology, distribution and population status. Whilst taxonomic ambiguity has been a major constraint on conservation efforts, this has been partially overcome by recent, robust taxonomic revisions. This has enabled revision of the IUCN Red List status of Tor fishes; three species are now assessed as ‘Near Threatened’, one ‘Vulnerable’, three ‘Endangered’ and one ‘Critically Endangered’. However, eight species remain ‘Data deficient’. Here, information on these 16 Tor fishes is synthesised for the first time, outlining the current state of knowledge for each species, including their known distributions and population status. For each species, the outstanding gaps in knowledge are also identified, and their population threats and conservation prospects outlined. Consequently, this review provides the basis for researchers to challenge and enhance the knowledge base necessary to conserve these freshwater icons in an era of unprecedented environmental changes

    Topological and Functional Characterization of an Insect Gustatory Receptor

    Get PDF
    Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol

    The Nanos3-3′UTR Is Required for Germ Cell Specific NANOS3 Expression in Mouse Embryos

    Get PDF
    BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo

    Taste processing in Drosophila larvae.

    Get PDF
    The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances

    An Evolutionarily Conserved Arginine Is Essential for Tre1 G Protein-Coupled Receptor Function During Germ Cell Migration in Drosophila melanogaster

    Get PDF
    BACKGROUND: G protein-coupled receptors (GPCRs) play central roles in mediating cellular responses to environmental signals leading to changes in cell physiology and behaviors, including cell migration. Numerous clinical pathologies including metastasis, an invasive form of cell migration, have been linked to abnormal GPCR signaling. While the structures of some GPCRs have been defined, the in vivo roles of conserved amino acid residues and their relationships to receptor function are not fully understood. Trapped in endoderm 1 (Tre1) is an orphan receptor of the rhodopsin class that is necessary for primordial germ cell migration in Drosophila melanogaster embryos. In this study, we employ molecular genetic approaches to identify residues in Tre1 that are critical to its functions in germ cell migration. METHODOLOGY/PRINCIPAL FINDINGS: First, we show that the previously reported scattershot mutation is an allele of tre1. The scattershot allele results in an in-frame deletion of 8 amino acids at the junction of the third transmembrane domain and the second intracellular loop of Tre1 that dramatically impairs the function of this GPCR in germ cell migration. To further refine the molecular basis for this phenotype, we assayed the effects of single amino acid substitutions in transgenic animals and determined that the arginine within the evolutionarily conserved E/N/DRY motif is critical for receptor function in mediating germ cell migration within an intact developing embryo. CONCLUSIONS/SIGNIFICANCE: These structure-function studies of GPCR signaling in native contexts will inform future studies into the basic biology of this large and clinically important family of receptors

    Development of a cDNA microarray for the measurement of gene expression in the sheep scab mite Psoroptes ovis

    Get PDF
    Background: Sheep scab is caused by the ectoparasitic mite Psoroptes ovis which initiates a profound cutaneous inflammatory response, leading to the development of the skin lesions which are characteristic of the disease. Existing control strategies rely upon injectable endectocides and acaricidal dips but concerns over residues, eco-toxicity and the development of acaricide resistance limit the sustainability of this approach. In order to identify alternative means of disease control, a deeper understanding of both the parasite and its interaction with the host are required. Methods: Herein we describe the development and utilisation of an annotated P. ovis cDNA microarray containing 3,456 elements for the measurement of gene expression in this economically important ectoparasite. The array consists of 981 P. ovis EST sequences printed in triplicate along with 513 control elements. Array performance was validated through the analysis of gene expression differences between fed and starved P. ovis mites. Results: Sequences represented on the array include homologues of major house dust mite allergens and tick salivary proteins, along with factors potentially involved in mite reproduction and xenobiotic metabolism. In order to validate the performance of this unique resource under biological conditions we used the array to analyse gene expression differences between fed and starved P. ovis mites. These analyses identified a number of house dust mite allergen homologues up-regulated in fed mites and P. ovis transcripts involved in stress responses, autophagy and chemosensory perception up-regulated in starved mites. Conclusion: The P. ovis cDNA microarray described here has been shown to be both robust and reproducible and will enable future studies to analyse gene expression in this important ectoparasite
    • …
    corecore