6 research outputs found

    Ultrahigh energy neutrinos at the Pierre Auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEνs) has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν) or in the Earth crust (Earth-skimming ν), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.P. Abreu ... K. B. Barber ... J. A. Bellido ... R. W. Clay ... M. J. Cooper ... B. R. Dawson ... T. A. Harrison ... A. E. Herve ... V. C. Holmes ... J. Sorokin ... P. Wahrlich ... B. J. Whelan ... et al

    First detection of VHE gamma-ray emission from TXS 1515-273, study of its X-ray variability and spectral energy distribution

    Get PDF
    We report here on the first multiwavelength (MWL) campaign on the blazar TXS 1515-273, undertaken in 2019 and extending from radio to very-high-energy gamma-rays (VHE). Up until now, this blazar had not been the subject of any detailed MWL observations. It has a rather hard photon index at GeV energies and was considered a candidate extreme high-synchrotron-peaked source. MAGIC observations resulted in the first-time detection of the source in VHE with a statistical significance of 7.6\u3c3. The average integral VHE flux of the source is 6 \ub1 1 per cent of the Crab nebula flux above 400 GeV. X-ray coverage was provided by Swift-XRT, XMM-Newton, and NuSTAR. The long continuous X-ray observations were separated by ~9 h, both showing clear hour scale flares. In the XMM-Newton data, both the rise and decay time-scales are longer in the soft X-ray than in the hard X-ray band, indicating the presence of a particle cooling regime. The X-ray variability time-scales were used to constrain the size of the emission region and the strength of the magnetic field. The data allowed us to determine the synchrotron peak frequency and classify the source as a flaring high, but not extreme synchrotron-peaked object. Considering the constraints and variability patterns from the X-ray data, we model the broad-band spectral energy distribution. We applied a simple one-zone model, which could not reproduce the radio emission and the shape of the optical emission, and a two-component leptonic model with two interacting components, enabling us to reproduce the emission from radio to VHE band...

    Search for Very High-Energy Emission from the millisecond pulsar PSR J0218+4232

    No full text
    PSR J0218+4232 is one of the most energetic millisecond pulsars known and has long been considered as one of the best candidates for very high-energy (VHE; >100 GeV) gamma-ray emission. Using 11.5 years of Fermi Large Area Telescope (LAT) data between 100 MeV and 870 GeV, and ~90 hours of MAGIC observations in the 20 GeV to 20 TeV range, we have searched for the highest energy gamma-ray emission from PSR J0218+4232. Based on the analysis of the LAT data, we find evidence for pulsed emission above 25 GeV, but see no evidence for emission above 100 GeV (VHE) with MAGIC. We present the results of searches for gamma-ray emission, along with theoretical modeling, to interpret the lack of VHE emission. We conclude that, based on the experimental observations and theoretical modeling, it will remain extremely challenging to detect VHE emission from PSR J0218+4232 with the current generation of Imaging Atmospheric Cherenkov Telescopes (IACTs), and maybe even with future ones, such as the Cherenkov Telescope Array (CTA)...

    Studying the nature of the unidentified gamma-ray source HESS J1841-055 with the MAGIC telescopes

    Get PDF
    187siWe investigate the physical nature and origin of the gamma-ray emission from the extended source HESS J1841-055 observed at TeV and GeV energies. We observed HESS J1841-055 at TeV energies for a total effective time of 43 h with the MAGIC telescopes, in 2012 and 2013. Additionally, we analysed the GeV counterpart making use of about 10 yr of Fermi-LAT data. Using both Fermi-LAT and MAGIC, we study both the spectral and energy-dependent morphology of the source for almost four decades of energy. The origin of the gamma-ray emission from this region is investigated using multiwaveband information on sources present in this region, suggested to be associated with this unidentified gamma-ray source. We find that the extended emission at GeV-TeV energies is best described by more than one source model. We also perform the first energy-dependent analysis of the HESS J1841-055 region at GeV-TeV. We find that the emission at lower energies comes from a diffuse or extended component, while the major contribution of gamma rays above 1 TeV arises from the southern part of the source. Moreover, we find that a significant curvature is present in the combined observed spectrum of MAGIC and Fermi-LAT. The first multiwavelength spectral energy distribution of this unidentified source shows that the emission at GeV-TeV energies can be well explained with both leptonic and hadronic models. For the leptonic scenario, bremsstrahlung is the dominant emission compared to inverse Compton. On the other hand, for the hadronic model, gamma-ray resulting from the decay of neutral pions (π0) can explain the observed spectrum. The presence of dense molecular clouds overlapping with HESS J1841-055 makes both bremsstrahlung and π0-decay processes the dominant emission mechanisms for the source.nonemixedAcciari V.A.; Ansoldi S.; Antonelli L.A.; Arbet Engels A.; Asano K.; Baack D.; Babic A.; Banerjee B.; Baquero A.; Barres De Almeida U.; Barrio J.A.; Becerra Gonzalez J.; Bednarek W.; Bellizzi L.; Bernardini E.; Bernardos M.; Berti A.; Besenrieder J.; Bhattacharyya W.; Bigongiari C.; Biland A.; Blanch O.; Bonnoli G.; Bosnjak Z.; Busetto G.; Carosi R.; Ceribella G.; Cerruti M.; Chai Y.; Chilingarian A.; Cikota S.; Colak S.M.; Colombo E.; Contreras J.L.; Cortina J.; Covino S.; D'amico G.; D'elia V.; Da Vela P.; Dazzi F.; De Angelis A.; De Lotto B.; Delfino M.; Delgado J.; Delgado Mendez C.; Depaoli D.; Di Girolamo T.; Di Pierro F.; Di Venere L.; Do Souto Espineira E.; Dominis Prester D.; Donini A.; Dorner D.; Doro M.; Elsaesser D.; Fallah Ramazani V.; Fattorini A.; Ferrara G.; Foffano L.; Fonseca M.V.; Font L.; Fruck C.; Fukami S.; Garcia Lopez R.J.; Garczarczyk M.; Gasparyan S.; Gaug M.; Giglietto N.; Giordano F.; Gliwny P.; Godinovic N.; Green D.; Hadasch D.; Hahn A.; Heckmann L.; Herrera J.; Hoang J.; Hrupec D.; Hutten M.; Inada T.; Inoue S.; Ishio K.; Iwamura Y.; Jouvin L.; Kajiwara Y.; Karjalainen M.; Kerszberg D.; Kobayashi Y.; Kubo H.; Kushida J.; Lamastra A.; Lelas D.; Leone F.; Lindfors E.; Lombardi S.; Longo F.; Lopez M.; Lopez-Coto R.; Lopez-Oramas A.; Loporchio S.; Machado De Oliveira Fraga B.; Maggio C.; Majumdar P.; Makariev M.; Mallamaci M.; Maneva G.; Manganaro M.; Mannheim K.; Maraschi L.; Mariotti M.; Martinez M.; Mazin D.; Mender S.; Micanovic S.; Miceli D.; Miener T.; Minev M.; Miranda J.M.; Mirzoyan R.; Molina E.; Moralejo A.; Morcuende D.; Moreno V.; Moretti E.; Munar-Adrover P.; Neustroev V.; Nigro C.; Nilsson K.; Ninci D.; Nishijima K.; Noda K.; Nozaki S.; Ohtani Y.; Oka T.; Otero-Santos J.; Palatiello M.; Paneque D.; Paoletti R.; Paredes J.M.; Pavletic L.; Penil P.; Perennes C.; Persic M.; Prada Moroni P.G.; Prandini E.; Priyadarshi C.; Puljak I.; Rhode W.; Ribo M.; Rico J.; Righi C.; Rugliancich A.; Saha L.; Sahakyan N.; Saito T.; Sakurai S.; Satalecka K.; Schleicher B.; Schmidt K.; Schweizer T.; Sitarek J.; Snidaric I.; Sobczynska D.; Spolon A.; Stamerra A.; Strom D.; Strzys M.; Suda Y.; Suric T.; Takahashi M.; Tavecchio F.; Temnikov P.; Terzic T.; Teshima M.; Torres-Alba N.; Tosti L.; Truzzi S.; Van Scherpenberg J.; Vanzo G.; Vazquez Acosta M.; Ventura S.; Verguilov V.; Vigorito C.F.; Vitale V.; Vovk I.; Will M.; Zaric D.Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Asano, K.; Baack, D.; Babic, A.; Banerjee, B.; Baquero, A.; Barres De Almeida, U.; Barrio, J. A.; Becerra Gonzalez, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bonnoli, G.; Bosnjak, Z.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; Di Girolamo, T.; Di Pierro, F.; Di Venere, L.; Do Souto Espineira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Fallah Ramazani, V.; Fattorini, A.; Ferrara, G.; Foffano, L.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; Garcia Lopez, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinovic, N.; Green, D.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hutten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jouvin, L.; Kajiwara, Y.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Loporchio, S.; Machado De Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martinez, M.; Mazin, D.; Mender, S.; Micanovic, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Munar-Adrover, P.; Neustroev, V.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletic, L.; Penil, P.; Perennes, C.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribo, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Suric, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzic, T.; Teshima, M.; Torres-Alba, N.; Tosti, L.; Truzzi, S.; Van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Zaric, D

    An intermittent extreme BL Lac: MWL study of 1ES 2344+514 in an enhanced state

    Get PDF
    Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at vs 65 1017 Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the groundbased \u3b3 -ray telescope FACT during a high \u3b3 -ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) \u3b3 -rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE \u3b3 -ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The _ index of the intrinsic spectrum in the VHE \u3b3 -ray band is 2.04 \ub1 0.12stat \ub1 0.15sys.We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz

    The Pierre Auger Observatory II: Studies of Cosmic Ray Composition and Hadronic Interaction models

    No full text
    corecore