359 research outputs found

    Use of the GATE Monte Carlo package for dosimetry applications

    Get PDF
    6 pages, 3 figures - submitted to NIM A, presented by D. VisvikisInternational audienceOne of the roles for MC simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP, EGSnrc and PTRAN. However, such codes do not easily facilitate the description of complicated 3D sources or emission tomography systems and associated data flow, which may be useful in different dosimetry application domains. Such problems can be overcome by the use of specific MC codes such as GATE, which is based on Geant4 libraries, providing a scripting interface with a number of advantages for the simulation of SPECT and PET systems. Despite this potential, its major disadvantage is in terms of efficiency involving long execution times for applications such as dosimetry. The strong points and disadvantages of GATE in comparison to other dosimetry specific codes are discussed and illustrated in terms of accuracy, efficiency and flexibility. A number of features, such as the use of voxelised and moving sources, as well as developments such as advanced visualisation tools and the development of dose estimation maps allowing GATE to be used for dosimetry applications are presented. In addition, different examples from dosimetry applications with GATE are given. Finally, future directions with respect to the use of GATE for dosimetry applications are outlined

    Reference materials (RMs) for analysis of the human factor II (prothrombin) gene G20210A mutation

    Get PDF
    The Scientific Committee of Molecular Biology Techniques (C-MbT) in Clinical Chemistry of the IFCC has initiated a joint project in co-operation with the European Commission, Joint Research Centre, Institute of Reference Materials and Measurements to develop and produce plasmid-type reference materials (RMs), for the analysis of the human prothrombin gene G20210A mutation. Although DNA tests have a high impact on clinical decision-making and the number of tests performed in diagnostic laboratories is high, issues of quality and quality assurance exist, and currently only a few RMs for clinical genetic testing are available. A gene fragment chosen was produced that spans all primer annealing sites published to date. Both the wild-type and mutant alleles of this gene fragment were cloned into a pUC18 plasmid and two plasmid RMs were produced. In addition, a mixture of both plasmids was produced to mimic the heterozygous genotype. The present study describes the performance of these reference materials in a commutability study, in which they were tested by nine different methods in 13 expert laboratories.. This series of plasmid RMs are, to the best of our knowledge, the first plasmid-type clinical genetic RMs introduced worldwide

    Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge.

    Get PDF
    By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction), in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and compare modern image analysis methods to best extract and leverage this information automatically. We present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially expanded compared to the first edition, by providing a larger population (adding patients from a new clinical center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival (PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers, each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC) and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation, 4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first time, the prediction of outcome was also addressed and the best methods reached relatively good performance (C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies in HNC

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/

    Buffy coat specimens remain viable as a DNA source for highly multiplexed genome-wide genetic tests after long term storage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood specimen collection at an early study visit is often included in observational studies or clinical trials for analysis of secondary outcome biomarkers. A common protocol is to store buffy coat specimens for future DNA isolation and these may remain in frozen storage for many years. It is uncertain if the DNA remains suitable for modern genome wide association (GWA) genotyping.</p> <p>Methods</p> <p>We isolated DNA from 120 Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial buffy coats sampling a range of storage times up to 9 years and other factors that could influence DNA yield. We performed TaqMan SNP and GWA genotyping to test whether the DNA retained integrity for high quality genetic analysis.</p> <p>Results</p> <p>We tested two QIAGEN automated protocols for DNA isolation, preferring the Compromised Blood Protocol despite similar yields. We isolated DNA from all 120 specimens (yield range 1.1-312 ug per 8.5 ml ACD tube of whole blood) with only 3/120 samples yielding < 10 ug DNA. Age of participant at blood draw was negatively associated with yield (mean change -2.1 ug/year). DNA quality was very good based on gel electrophoresis QC, TaqMan genotyping of 6 SNPs (genotyping no-call rate 1.1% in 702 genotypes), and excellent quality GWA genotyping data (maximum per sample genotype missing rate 0.64%).</p> <p>Conclusions</p> <p>When collected as a long term clinical trial or biobank specimen for DNA, buffy coats can be stored for up to 9 years in a -80degC frozen state and still produce high yields of DNA suitable for GWA analysis and other genetic testing.</p> <p>Trial Registration</p> <p>The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial is registered with ClinicalTrials.gov, number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00000620">NCT00000620</a>.</p

    Impact of combined 18F-FDG PET/CT in head and neck tumours

    Get PDF
    To compare the interobserver agreement and degree of confidence in anatomical localisation of lesions using 2-[fluorine-18]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET alone in patients with head and neck tumours. A prospective study of 24 patients (16 male, eight female, median age 59 years) with head and neck tumours was undertaken. 18F-FDG PET/CT was performed for staging purposes. 2D images were acquired over the head and neck area using a GE Discovery LSℱ PET/CT scanner. 18F-FDG PET images were interpreted by three independent observers. The observers were asked to localise abnormal 18F-FDG activity to an anatomical territory and score the degree of confidence in localisation on a scale from 1 to 3 (1=exact region unknown; 2=probable; 3=definite). For all 18F-FDG-avid lesions, standardised uptake values (SUVs) were also calculated. After 3 weeks, the same exercise was carried out using 18F-FDG PET/CT images, where CT and fused volume data were made available to observers. The degree of interobserver agreement was measured in both instances. A total of six primary lesions with abnormal 18F-FDG uptake (SUV range 7.2–22) were identified on 18F-FDG PET alone and on 18F-FDG PET/CT. In all, 15 nonprimary tumour sites were identified with 18F-FDG PET only (SUV range 4.5–11.7), while 17 were identified on 18F-FDG PET/CT. Using 18F-FDG PET only, correct localisation was documented in three of six primary lesions, while 18F-FDG PET/CT correctly identified all primary sites. In nonprimary tumour sites, 18F-FDG PET/CT improved the degree of confidence in anatomical localisation by 51%. Interobserver agreement in assigning primary and nonprimary lesions to anatomical territories was moderate using 18F-FDG PET alone (kappa coefficients of 0.45 and 0.54, respectively), but almost perfect with 18F-FDG PET/CT (kappa coefficients of 0.90 and 0.93, respectively). We conclude that 18F-FDG PET/CT significantly increases interobserver agreement and confidence in disease localisation of 18F-FDG-avid lesions in patients with head and neck cancers

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    A Genome-Wide Association Study Identifies rs2000999 as a Strong Genetic Determinant of Circulating Haptoglobin Levels

    Get PDF
    Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far

    4th ESPT summer school: precision medicine and personalised health

    Get PDF
    In September 2018, the European Society of Pharmacogenomics and Personalised Therapy (ESPT), with the support of the Swiss Personalized Health Network (SPHN), organized its 4th biennial summer school, entitled 'Precision Medicine and Personalised Health' (Campus Biotech, Geneva, Switzerland; www.esptsummerschool.eu/ ). The school's comprehensive and innovative educational program aimed to address the fundamentals of pharmacogenomics, the latest knowledge on established and new concepts in the field of precision medicine, as well as its advanced clinical applications in personalized health. The school consisted of 31 lectures, eight interactive workshops, visits to genome center and poster presentations, involving 40 speakers from distinguished international faculties. The meeting was a resounding success by generating informal environments between more than 80 participants from 26 different countries
    • 

    corecore