42 research outputs found

    Inter-basin transfers as a supply option: the end of an era?

    Get PDF
    International audienceThis chapter discusses the evolving role of interbasin transfers (IBT) in urban water management. After providing an historical overview of IBT development, the chapter describes how IBTs are challenged by a change in the technological and socio-economic context. The emergence of alternative technologies, such as desalination, wastewater reclamation and reuse, or managed artificial groundwater recharge is reducing the attractiveness of IBTs. Water utilities are also becoming increasingly aware that water conservation programs can save volumes of water at a much cheaper cost than IBT. Various international examples are used to show that IBTs trigger increasing concerns from communities involved or affected, in particular related to the environmental impact on donor and receiving river basins, the economic impact on donor regions, the impact on local cultures and livelihoods, how costs and benefits are distributed (social justice), and issues related to public participation. The chapter concludes by looking ahead at new and more efficient uses of existing IBTs. As conjunctive use management approaches gain support, IBTs will be operated in conjunction with aquifer storage and recovery schemes. They will probably also support the development of emerging water markets, in particular during drought years

    Tuberculoma of the brain. Pathologic picture and diagnosis

    No full text
    This article does not have an abstract

    Phosphazene-Based Covalent Organic Polymer Decorated with NiCo2O4Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts

    No full text
    Developing nonprecious metal-based electrocatalysts to convert water into green fuels (H2 and O2) is key to address urgent climate and energy challenges. We have prepared an electrocatalyst by the immobilization of NiCo2O4 on a phosphazene-based covalent organic polymer (P-COP) through a facile hydrothermal method. The elemental composition of the P-COP showed the presence of a greater amount of heteroatoms N (6.62%) and P (5.62%) throughout the polymer support. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were utilized to determine the atomic structure of the nanocuboids, which depicted the formation of an inverse spinel structure. A NiCo2O4-P-COP-based electrode was simultaneously used for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), and it displayed a minimum overpotential of 270 and 130 mV (V vs RHE), respectively, at a current density of 10 mA cm-2. In addition, it acted as an oxygen reduction catalyst with a half-wave potential of 0.83 V (V vs RHE) and a maximum current density of 4.5 mA cm-2. The electrocatalytic activity is comparable with that of the commercially available Pt and RuO2 catalysts. The combined experimental and computational studies confirm that the catalytic centers formed through the interaction between the heteroatoms (N and P) in the phosphazene matrix and metal oxides (Co and Ni) play an important role in its improved durability and electrocatalytic activity
    corecore