66 research outputs found

    Thresholds of terrestrial nutrient loading for the development of eutrophication episodes in a coastal embayment in the Aegean Sea

    Get PDF
    Thresholds of terrestrial nutrient loading (inorganic N and P) for the development of eutrophication episodes were estimated in an enclosed embayment, the gulf of Kalloni, in the Aegean, Eastern Mediterranean. Terrestrial loading was quantified by a watershed runoff model taking into account land use, geomorphology, sewerage, industrial and animal farming by-products. The eutrophication episodes were assessed by an existing scale for the Aegean coastal waters based on chl a, whereas the necessary nutrient concentrations (N and P) for the development of such episodes were defined using a probabilistic procedure. Finally, for the linking between nutrient loading arriving at the gulf and the resulting nutrient enrichment of the marine ecosystem, three loading factors were applied, developed by Vollenweider for lake and marine ecosystems. The first assumes no exchange between the embayment and the open sea, whereas the two others take into account water renewal time. Only the threshold for inorganic nitrogen estimated by the first factor was exceeded in the study area during February after a strong rainfall event coinciding with a eutrophication episode observed in the interior of the gulf, implying that the waters of the gulf are rather confined and the receiving body operates as a lake. The degree of confinement was further examined by studying the temperature, salinity, and density distributions inside the gulf and across the channel connecting the gulf to the open sea. It was found that the incoming freshwater from the watershed during winter results to the formation of a dilute surface layer of low salinity and density, clearly isolated from the open sea. The nutrients from the river inputs are diluted into this isolated water mass and the eutrophication threshold for nitrogen is exceeded. Although phosphorus loading was also high during winter, the corresponding limits were never exceeded. The proposed methodology sets a quantitative relationship between terrestrial nutrient loading and the development of eutrophication episodes in coastal embayments, assuming that information on the physical setting of the system is available. These cause-and-effect relationships can be invaluable tools for managers and decision makers in the framework of Integrated Coastal Zone Management

    Environmental DNA: a new low-cost monitoring tool for pathogens in salmonid aquaculture

    Get PDF
    Environmental DNA (eDNA) metabarcoding is a relatively new monitoring tool featuring in an increasing number of applications such as the facilitation of the accurate and cost effective detection of species in environmental samples. eDNA monitoring is likely to have a major impact on the ability of salmonid aquaculture industry producers and their regulators to detect the presence and abundance of pathogens and other biological threats in the surrounding environment. However, for eDNA metabarcoding to develop into a useful bio-monitoring tool it is necessary to (a) validate that sequence datasets derived from amplification of metabarcoding markers reflect the true species’ identity, (b) test the sensitivity under different abundance levels and environmental noise and (c) establish a low-cost sequencing method to enable the bulk processing of field samples. In this study, we employed an elaborate experimental design whereby different combinations of five biological agents were crossed at three abundance levels and exposed to sterile pre-filtered and unfiltered seawater, prior to coarse filtering and then eDNA ultrafiltration of the resultant material. We then benchmarked the low-cost, scalable, Ion Torrent sequencing method against the current gold-standard Illumina platform for eDNA surveys in aquaculture. Based on amplicon-seq of the 18S SSU rDNA v9 region, we were able to identify two parasites (Lepeophtheirus salmonis and Paramoeba perurans) to species level, whereas the microalgae species Prymnesium parvum, Pseudo-nitzschia seriata, and P. delicatissima could be assigned correctly only to the genus level. Illumina and Ion Torrent provided near identical results in terms of community composition in our samples, whereas Ion Torrent was more sensitive in detecting species richness when the medium was unfiltered seawater. Both methods were able to reflect the difference in relative abundance between treatments in 4 out of 5 species when samples were exposed to the unfiltered seawater, despite the significant amount of background noise from both bacteria and eukaryotes. Our findings indicate that eDNA metabarcoding offers significant potential in the monitoring of species harmful to aquaculture and for this purpose, the low-cost Ion Torrent sequencing is as accurate as Illumina in determining differences in their relative abundance between samples

    Understanding edge-connectivity in the Internet through core-decomposition

    Get PDF
    Internet is a complex network composed by several networks: the Autonomous Systems, each one designed to transport information efficiently. Routing protocols aim to find paths between nodes whenever it is possible (i.e., the network is not partitioned), or to find paths verifying specific constraints (e.g., a certain QoS is required). As connectivity is a measure related to both of them (partitions and selected paths) this work provides a formal lower bound to it based on core-decomposition, under certain conditions, and low complexity algorithms to find it. We apply them to analyze maps obtained from the prominent Internet mapping projects, using the LaNet-vi open-source software for its visualization

    Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities

    Get PDF
    Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean

    No full text
    Structural changes of phytoplankton communities, often expressed through ecological indices, constitute one of the metrics for the implementation of the European Water Framework Directive (WFD). In the current study a thorough analysis of the efficiency of 22 ecological indices was performed and a small number was selected for the development of five-level water quality scales (High, Good, Moderate, Poor, and Bad). The analysis was performed on simulated communities free of the noise of field communities due to uncontrolled factors or stochastic processes. Two criteria were set for the sensitivity of indices, namely their monotonicity and linearity across the studied eutrophication spectrum. The whole procedure was based on the development of a five-level quality assessment scheme based on phytoplankton abundance. Among the indices tested, the Menhinick diversity index and three indices of evenness were the most efficient, showing consistency (monotonic behavior) and linearity and were therefore used for the development of quality scales for the WFD. An Integrated Phytoplankton Index (IPI) based on three phytoplankton metrics, chlorophyll a, abundance, and diversity is also proposed. The efficiency of these indices was evaluated for a number of sites in the Aegean, already classified in the past by various methods based on nutrient concentrations or phytoplankton data. The results indicate that the various phytoplankton metrics (chlorophyll a, abundance, and diversity) assessed or proposed in the current study, carry their own information showing differences in the final classification of areas. Therefore the establishment of synthetic indices as the IPI seems to be advantageous for the integrated assessment of coastal water quality in the framework of European policies as the WFD

    Zipf–Mandelbrot model behavior in marine eutrophication: two way fitting on field and simulated phytoplankton assemblages

    No full text
    Zipf–Mandelbrot (ZM) model, linking the evenness and predictability of communities (parameter gamma) to environmental diversification (parameter beta), was fitted on a phytoplankton dataset, representing a wide productivity spectrum characteristic of Eastern Mediterranean. To reveal community characteristics explaining observed patterns in gamma and beta, ZM model was also fitted on simulated assemblages generated by three niche-based models. Parameter gamma showed a decreasing trend with evenness in agreement with theory and related field studies. High gamma values corresponded to phytoplankton assemblages characterized by the presence of a dominant species, the rest being evenly distributed, whereas low gamma was observed for even assemblages. For ZM beta with evenness, a characteristic U-shaped relationship was observed in field and simulated assemblages, implying that high environmental diversification may lead to either high or low evenness. These assemblages are described by MacArthur fraction and dominance decay niche-based models and their only difference is the dominance of a single species, the rest being evenly distributed. At intermediate environmental diversification, more often encountered in the field, phytoplankton assemblages are described by random fraction model resulting to slightly steeper RADs. Two-way fitting approach on field and simulated assemblages provided useful insights on both ZM model behavior and its underlying hypotheses

    Simulating the structure of natural phytoplankton assemblages: descriptive vs. mechanistic models

    No full text
    Simulated phytoplankton assemblages (species richness and allocation of cells to species) retaining the diversity, evenness, and redundancy of natural assemblages were generated in the present paper. The methodology was validated against phytoplankton data from coastal Mediterranean waters, characteristic of oligotrophy to eutrophication. Two modelling approaches were used: a descriptive based on the log series statistical distribution, and a mechanistic based on the random fraction niche-apportionment model. Two characteristic relationships extracted from field data (888 samples), relating species richness and the abundance of the most dominant species with cell density, formed the basis of the modelling procedure. Simulated assemblages generated by both log series and random fraction models closely matched the structure of natural phytoplankton assemblages, showing however differences in their behaviour and easiness of application. Simulation by the log series model resulted in a wider range of assemblage diversity, closer to reality compared to random fraction model. Nevertheless, the latter includes a stochastic element always present in field assemblages, it is mathematically simpler to be applied, and it is based on a sound theoretical basis linking assemblage structure and resource availability. The proposed simulated assemblages can be used in a variety of applications ranging from the development of systematic methodologies for water quality assessment to the incorporation of a multispecies phytoplankton component in biogeochemical dynamic models

    A new hydrology: effects on ecosystem form and functioning

    No full text
    Water cycles are changing because of human population growth and climate change. Such changes will affect fundamental system-level characteristics that in turn will greatly influence ecosystem form and functioning. Here, a collection of papers is offered that furthers our understanding of cause and effect relationships between altered hydrology and various ecosystem properties. Combined, these papers address issues related to inflows, connectivity, and circulation and vertical mixing. In regards to altered inflows, this collection of papers addresses how seagrass bed communities, incidence of some haptophyte harmful algal blooms, and biodiversity of intermittently flowing streams might respond. These papers also address factors that influence connectivity in wetlands, and in the case of a lake and its neighboring wetland, how connectivity between systems can profoundly affect ecosystem form and functioning. Finally, the effects of altered circulation and vertical mixing are addressed as they relate to the spread of some cyanobacteria blooms to higher latitudes. The reader of this collection of papers gains a better appreciation of how ecosystem form and functioning is influenced by hydrologic processes and can conclude that there is a need for continued research in this area to better understand the impacts of human population growth and climate change

    Application of the lognormal equation to assess phytoplankton community structural changes induced by marine eutrophication

    No full text
    A methodological approach was developed for the quantification of the structural changes of phytoplankton communities induced by marine eutrophication. The lognormal equation assigning species abundance to doubling intervals (octaves) of individuals formed the basis of the proposed methodology and the field validation process was based on phytoplankton enumeration and classification data characteristic of eutrophic, mesotrophic and oligotrophic waters. Five octave sets with different sizes were tested for goodness of fit against field data and the set with the smallest size of doubling intervals was selected for further consideration. The application of the lognormal equation was evaluated statistically with field data and it was considered satisfactory at the 87% level. The changes in the shape of the lognormal equation induced by eutrophication were expressed by three characteristic parameters of the equation: the number of the modal octave, the number of species in the modal octave, and the shaping factor. Significant differences were observed for the three parameters among eutrophic, mesotrophic, and oligotrophic waters; the number of the modal octave was high in eutrophic and mesotrophic waters, the number of species in the modal octave has shown a trend of low values under mesotrophic conditions and the shaping factor has shown a considerable increase from eutrophic to oligotrophic waters
    corecore