1,088 research outputs found
SCUBA observations of the Horsehead Nebula - what did the horse swallow?
We present observations taken with SCUBA on the JCMT of the Horsehead Nebula
in Orion (B33), at wavelengths of 450 and 850 \mum. We see bright emission from
that part of the cloud associated with the photon-dominated region (PDR) at the
`top' of the horse's head, which we label B33-SMM1. We characterise the
physical parameters of the extended dust responsible for this emission, and
find that B33-SMM1 contains a more dense core than was previously suspected. We
compare the SCUBA data with data from the Infrared Space Observatory (ISO) and
find that the emission at 6.75-\mum is offset towards the west, indicating that
the mid-infrared emission is tracing the PDR while the submillimetre emission
comes from the molecular cloud core behind the PDR. We calculate the virial
balance of this core and find that it is not gravitationally bound but is being
confined by the external pressure from the HII region IC434, and that it will
either be destroyed by the ionising radiation, or else may undergo triggered
star formation. Furthermore we find evidence for a lozenge-shaped clump in the
`throat' of the horse, which is not seen in emission at shorter wavelengths. We
label this source B33-SMM2 and find that it is brighter at submillimetre
wavelengths than B33-SMM1. SMM2 is seen in absorption in the 6.75-\mum ISO
data, from which we obtain an independent estimate of the column density in
excellent agreement with that calculated from the submillimetre emission. We
calculate the stability of this core against collapse and find that it is in
approximate gravitational virial equilibrium. This is consistent with it being
a pre-existing core in B33, possibly pre-stellar in nature, but that it may
also eventually undergo collapse under the effects of the HII region.Comment: 11 pages, 6 figures, accepted by MNRA
A Corona Australis cloud filament seen in NIR scattered light II: Comparison with sub-millimeter data
We study a northern part of the Corona Australis molecular cloud that
consists of a filament and a dense sub-millimetre core inside the filament. Our
aim is to measure dust temperature and sub-mm emissivity within the region. We
also look for confirmation that near-infrared (NIR) surface brightness can be
used to study the structure of even very dense clouds. We extend our previous
NIR mapping south of the filament. The dust colour temperatures are estimated
using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived
based on the reddening of background stars, NIR surface brightness, and thermal
sub-mm dust emission are compared. A three dimensional toy model of the
filament is used to study the effect of anisotropic illumination on
near-infrared surface brightness and the reliability of dust temperature
determination. Relative to visual extinction, the estimated emissivity at 870um
is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values
found in diffuse medium. A significant increase in the sub-millimetre
emissivity seems to be excluded. In spite of saturation, NIR surface brightness
was able to accurately pinpoint, and better than measurements of the colour
excesses of background stars, the exact location of the column density maximum.
Both near- and far-infrared data show that the intensity of the radiation field
is higher south of the filament.Comment: 9 pages, 9 figures, accepted to A&
Micron-sized atom traps made from magneto-optical thin films
We have produced magnetic patterns suitable for trapping and manipulating
neutral atoms on a m length scale. The required patterns are made in
Co/Pt thin films on a silicon substrate, using the heat from a focussed laser
beam to induce controlled domain reversal. In this way we draw lines and
"paint" shaped areas of reversed magnetization with sub-micron resolution.
These structures produce magnetic microtraps above the surface that are
suitable for holding rubidium atoms with trap frequencies as high as ~1 MHz.Comment: 6 pages, 7 figure
Molecular line contamination in the SCUBA-2 450 {\mu}m and 850 {\mu}m continuum data
Observations of the dust emission using millimetre/submillimetre bolometer
arrays can be contaminated by molecular line flux, such as flux from 12CO. As
the brightest molecular line in the submillimetre, it is important to quantify
the contribution of CO flux to the dust continuum bands. Conversion factors
were used to convert molecular line integrated intensities to flux detected by
bolometer arrays in mJy per beam. These factors were calculated for 12CO line
integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The
conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the
Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud
complex to quantify the respective 12CO flux contribution to the 850 {\mu}m
dust continuum emission. Sources with high molecular line contamination were
analysed in further detail for molecular outflows and heating by nearby stars
to determine the cause of the 12CO contribution. The majority of sources had a
12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular
outflows, the 12CO can dominate the source dust continuum (up to 79 per cent
contamination) with 12CO fluxes reaching \sim 68 mJy per beam.Comment: Accepted 2012 April 19 for publication in MNRAS. 21 pages, 13
figures, 3 table
Recommended from our members
Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function.
Oculocutaneous syndromes are often due to mutations in single genes. In some cases, mouse models for these diseases exist in spontaneously occurring mutations, or in mice resulting from forward mutatagenesis screens. Here we present novel genes that may be causative for oculocutaneous disease in humans, discovered as part of a genome-wide screen of knockout-mice in a targeted single-gene deletion project. The International Mouse Phenotyping Consortium (IMPC) database (data release 10.0) was interrogated for all mouse strains with integument abnormalities, which were then cross-referenced individually to identify knockouts with concomitant ocular abnormalities attributed to the same targeted gene deletion. The search yielded 307 knockout strains from unique genes with integument abnormalities, 226 of which have not been previously associated with oculocutaneous conditions. Of the 307 knockout strains with integument abnormalities, 52 were determined to have ocular changes attributed to the targeted deletion, 35 of which represent novel oculocutaneous genes. Some examples of various integument abnormalities are shown, as well as two examples of knockout strains with oculocutaneous phenotypes. Each of the novel genes provided here are potentially relevant to the pathophysiology of human integumentary, or oculocutaneous conditions, such as albinism, phakomatoses, or other multi-system syndromes. The novel genes reported here may implicate molecular pathways relevant to these human diseases and may contribute to the discovery of novel therapeutic targets
On turbulent fragmentation and the origin of the stellar IMF
Two varieties of the universal stellar initial mass function (IMF) viz., the
Kroupa and the Chabrier IMF, have emerged over the last decade to explain the
observed distribution of stellar masses. The possibility of the universal
nature of the stellar IMF leads us to the interesting prospect of a universal
mode of star-formation. It is well-known that turbulent fragmentation of gas in
the interstellar medium produces a lognormal distribution of density which is
further reflected by the mass-function for clumps at low and intermediate
masses. Stars condense out of unstable clumps through a complex interplay
between a number of dynamic processes which must be accounted for when tracing
the origin of the stellar IMF. In the present work, applying the theory of
gravitational fragmentation we first derive the mass function (MF) for clumps.
Then a core mass function (CMF) is derived by allowing the clumps to fragment,
having subjected each one to a random choice of gas temperature. Finally, the
stellar IMF is derived by applying a random core-to-star conversion efficiency,
, in the range of 5%-15% to each CMF. We obtain a power-law IMF that
has exponents within the error-bars on the Kropua IMF. This derived IMF is
preceded by a similar core mass function which suggests, gravoturbulent
fragmentation plays a key role in assembling necessary conditions that relate
the two mass-functions. In this sense the star-formation process, at least at
low redshifts where gas cooling is efficient, is likely to be universal. We
argue that the observed knee in the CMF and the stellar IMF may alternatively
be interpreted in terms of the characteristic temperature at which gas in
potential star-forming clouds is likely to be found. Our results also show that
turbulence in star-forming clouds is probably driven on large spatial scales
with a power-spectrum steeper than Kolmogorov-type.Comment: 10 pages, 5 figures; To appear in New Astronomy; Figure numbers
corrected in this versio
Measurements of cosmic-ray energy spectra with the 2nd CREAM flight
During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And
Mass) balloon experiment collected data for 28 days, measuring the charge and
the energy of cosmic rays (CR) with a redundant system of particle
identification and an imaging thin ionization calorimeter. Preliminary direct
measurements of the absolute intensities of individual CR nuclei are reported
in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very
High Energy Cosmic Ray Interactions (ISVHECRI 2008
Direct evidence of dust growth in L183 from MIR light scattering
Theoretical arguments suggest that dust grains should grow in the dense cold
parts of molecular clouds. Evidence of larger grains has so far been gathered
in near/mid infrared extinction and millimeter observations. Interpreting the
data is, however, aggravated by the complex interplay of density and dust
properties (as well as temperature for thermal emission). We present new
Spitzer data of L183 in bands that are sensitive and insensitive to PAHs. The
visual extinction AV map derived in a former paper was fitted by a series of 3D
Gaussian distributions. For different dust models, we calculate the scattered
MIR radiation images of structures that agree agree with the AV map and compare
them to the Spitzer data. The Spitzer data of L183 show emission in the 3.6 and
4.5 micron bands, while the 5.8 micron band shows slight absorption. The
emission layer of stochastically heated particles should coincide with the
layer of strongest scattering of optical interstellar radiation, which is seen
as an outer surface on I band images different from the emission region seen in
the Spitzer images. Moreover, PAH emission is expected to strongly increase
from 4.5 to 5.8 micron, which is not seen. Hence, we interpret this emission to
be MIR cloudshine. Scattered light modeling when assuming interstellar medium
dust grains without growth does not reproduce flux measurable by Spitzer. In
contrast, models with grains growing with density yield images with a flux and
pattern comparable to the Spitzer images in the bands 3.6, 4.5, and 8.0 micron.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
StreamJIT: A Commensal Compiler for High-Performance Stream Programming
There are many domain libraries, but despite the performance benefits of compilation, domain-specific languages are comparatively rare due to the high cost of implementing an optimizing compiler. We propose commensal compilation, a new strategy for compiling embedded domain-specific languages by reusing the massive investment in modern language virtual machine platforms. Commensal compilers use the host language's front-end, use host platform APIs that enable back-end optimizations by the host platform JIT, and use an autotuner for optimization selection. The cost of implementing a commensal compiler is only the cost of implementing the domain-specific optimizations. We demonstrate the concept by implementing a commensal compiler for the stream programming language StreamJIT atop the Java platform. Our compiler achieves performance 2.8 times better than the StreamIt native code (via GCC) compiler with considerably less implementation effort.United States. Dept. of Energy. Office of Science (X-Stack Award DE-SC0008923)Intel Corporation (Science and Technology Center for Big Data)SMART3 Graduate Fellowshi
- …
