
StreamJIT: A Commensal Compiler for
High-Performance Stream Programming

Jeffrey Bosboom
MIT CSAIL

jbosboom@csail.mit.edu

Sumanaruban Rajadurai
Weng-Fai Wong

National University of Singapore
{sumanaruban,wongwf}@nus.edu.sg

Saman Amarasinghe
MIT CSAIL

saman@csail.mit.edu

Abstract
There are many domain libraries, but despite the perfor-
mance benefits of compilation, domain-specific languages
are comparatively rare due to the high cost of implementing
an optimizing compiler. We propose commensal compilation,
a new strategy for compiling embedded domain-specific lan-
guages by reusing the massive investment in modern lan-
guage virtual machine platforms. Commensal compilers use
the host language’s front-end, use host platform APIs that
enable back-end optimizations by the host platform JIT, and
use an autotuner for optimization selection. The cost of im-
plementing a commensal compiler is only the cost of imple-
menting the domain-specific optimizations. We demonstrate
the concept by implementing a commensal compiler for the
stream programming language StreamJIT atop the Java plat-
form. Our compiler achieves performance 2.8 times better
than the StreamIt native code (via GCC) compiler with con-
siderably less implementation effort.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, dis-
tributed and parallel languages, Data-flow languages; D.3.4
[Programming Languages]: Processors—Compilers, code
generation, optimization

Keywords Domain-specific languages, embedded domain-
specific languages

1. Introduction
Today’s software is built on multiple layers of abstraction
which make it possible to rapidly and cost-effectively build
complex applications. These abstractions are generally pro-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
OOPSLA ’14, October 20–24, 2014, Portland, Oregon, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2585-1/14/10.
http://dx.doi.org/10.1145/2660193.2660236

vided as domain-specific libraries, such as LAPACK [3] in
the linear algebra domain and ImageMagick [18] in the im-
age processing domain. However, applications using these
performance critical domain libraries lack the compiler opti-
mization support needed for higher performance, such as ju-
dicious parallelization or fusing multiple functions for local-
ity. On the other hand, domain-specific languages and com-
pilers are able to provide orders of magnitude more perfor-
mance by incorporating such optimizations, giving the user
both simple abstractions and high performance. In the im-
age processing domain, for example, Halide [28] programs
are both faster than the hand-optimized code and smaller and
simpler than the naive code.

Despite these benefits, compiled domain-specific lan-
guages are extremely rare compared to library-based im-
plementations. This is mainly due to the enormous cost of
developing a robust and capable compiler along with tools
necessary for a practical language, such as debuggers and
support libraries. There are attempts to remedy this by build-
ing reusable DSL frameworks such as Delite [12], but it will
require a huge investment to make these systems as robust,
portable, usable and familiar as C++, Java, Python, etc. Sys-
tems like StreamHs [21] generate high-performance binary
code with an external compiler, but incur the awkwardness
of calling it through a foreign function interface and cannot
reuse existing code from the host language. Performance-
critical domains require the ability to add domain-specific
optimizations to existing libraries without the need to build
a full-fledged optimizing compiler.

In this paper we introduce a new strategy, commensal
compilation, for implementing embedded domain-specific
languages by reusing the existing infrastructure of modern
language VMs. Commensal1 compilers use the host lan-
guage’s front-end as their front-end, an autotuner to replace
their middle-end optimization heuristics and machine model,
and the dynamic language and standard JIT optimization
support provided by the virtual machine as their back-end

1 In ecology, a commensal relationship between species benefits one species
without affecting the other (e.g., barnacles on a whale).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78064952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

code generator. Only the essential complexity of the domain-
specific optimizations remains. The result is good perfor-
mance with dramatically less implementation effort com-
pared to a compiler targeting virtual machine bytecode or
native code. Commensal compilers inherit the portability
of their host platform, while the autotuner ensures perfor-
mance portability. We prove the concept by implementing a
commensal compiler for the stream programming language
StreamJIT atop the Java platform. Our compiler achieves
performance on average 2.8 times better than StreamIt’s na-
tive code (via GCC) compiler with considerably less imple-
mentation effort.

As StreamJIT makes no language extensions, user code
written against the StreamJIT API is compiled with stan-
dard javac, and for debugging, StreamJIT can be used as
“just a library”, in which StreamJIT programs run as any
other Java application. For performance, the StreamJIT com-
mensal compiler applies domain-specific optimizations to
the stream program and computes a static schedule for auto-
matic parallelization. Writing portable heuristics is very dif-
ficult because the best combination of optimizations depends
on both the JVM and the underlying hardware; instead, the
StreamJIT compiler uses the OpenTuner extensible auto-
tuner [6] to make its optimization decisions. The compiler
then performs a simple pattern-match bytecode rewrite and
builds a chain of MethodHandle (the JVM’s function point-
ers) combinators to be compiled by the JVM JIT. The JVM
has complete visibility through the method handle chain, en-
abling the full suite of JIT optimizations. By replacing the
traditional compiler structure with this existing infrastruc-
ture, we can implement complex optimizations such as fu-
sion of multiple filters, automatic data parallelization and
distribution to a cluster with only a small amount of com-
pilation, control and communication code.

Our specific contributions are

• commensal compilation, a novel compilation strategy
for embedded domain-specific languages, that dramati-
cally reduces the effort required to implement a compiled
domain-specific language,
• a commensal compiler for the stream programming lan-

guage StreamJIT, which demonstrates the feasibility of
commensal compilation by achieving on average 2.8
times better performance than StreamIt’s native code
compiler with an order of magnitude less code.

Section 2 explains commensal compilers abstractly, sep-
arate from any particular language. Section 3 discusses re-
lated work in compilers and stream programming. Section 4
gives an overview of the Java-embedded stream program-
ming language StreamJIT. Section 5 describes specifics of
implementing commensal compilers in Java, using StreamJIT
as an example. Section 6 describes the StreamJIT API
and workflow, Section 7 describes interpreted mode, Sec-
tion 8 describes the commensal compiler in detail, Sec-

tion 9 describes how the StreamJIT compiler uses an au-
totuner, and Section 10 describes how StreamJIT programs
are distributed to multiple machines. Section 11 evaluates
StreamJIT’s performance against the StreamIt native code
compiler and Section 12 concludes.

2. Commensal Compiler Design
Commensal compilers are defined by their reuse of existing
infrastructure to reduce the cost of implementing an optimiz-
ing compiler. In this section we explain the design of com-
mensal compiler front-, middle- and back-ends.

Front-end Commensal compilers compile embedded do-
main-specific languages expressed as libraries (not language
extensions) in a host language that compiles to bytecode for
a host platform virtual machine. To write a DSL program,
users write host language code extending library classes,
passing lambda functions, or otherwise using standard host
language abstraction features. This includes code to com-
pose these new classes into a program, allowing the DSL
program to be generated at runtime in response to user input.
This host language code is compiled with the usual host lan-
guage compiler along with the rest of the application embed-
ding the DSL program. Implementing a DSL using a library
instead of with a traditional front-end reduces implementa-
tion costs, allows users to write code in a familiar language,
reuse existing code from within the DSL program, easily in-
tegrate into the host application build process, and use exist-
ing IDEs and analysis tools without adding special language
support.

At run time, the compiled code can be executed directly,
as “just a library”, analogous to a traditional language in-
terpreter. In this interpreted mode, users can set breakpoints
and inspect variables with standard graphical debuggers. By
operating as a normal host language application, the DSL
does not require debugging support code.

Middle-end For increased performance, a commensal com-
piler can reflect over the compiled code, apply domain-
specific optimizations, and generate optimized code. A com-
mensal compiler leaves standard compiler optimizations
such as constant subexpression elimination or loop unrolling
to the host platform, so its intermediate representation can
be at the domain level, tailored to the domain-specific opti-
mizations.

In a few domains, using simple algorithms or heuristics to
guide the domain-specific optimizations results in good (or
good enough) performance, but most domains require a nu-
anced understanding of the interaction between the program
and the underlying hardware. In place of complex heuris-
tics and machine performance models, commensal compil-
ers can delegate optimization decisions to an autotuner, si-
multaneously reducing implementation costs and ensuring
performance portability.

Back-end Many platforms provide APIs for introspectable
expressions or dynamic language support that can be reused
for code generation in place of compiling back to bytecode.
Code generators using these APIs can compose normal host
language code instead of working at the bytecode level,
keeping the code generator modular enough to easily swap
implementation details at the autotuner’s direction. Finally,
code generated through these APIs can include constant
references to objects and other runtime entities, allowing the
host platform’s JIT compiler to generate better code than if
the DSL compiled to bytecode.

The compiled DSL code runs on the host platform as
any other code, running in the same address space with the
same data types, threading primitives and other platform fea-
tures, so interaction with the host application is simple; a for-
eign function interface is not required. Existing profilers and
monitoring tools continue to report an accurate picture of the
entire application, including the optimized DSL program.

Result The result of these design principles is an efficient
compiler without the traditional compiler costs: the front-
end is the host front-end, the middle-end eliminates all but
domain-specific optimizations using an autotuner, and the
back-end leaves optimizations to the host platform. Only the
essential costs of the domain-specific optimizations remains.

In this paper we present a commensal compiler for the
stream programming language StreamJIT. The host lan-
guage is Java, the host platform is the Java Virtual Machine,
and code generation is via the MethodHandle APIs origi-
nally for dynamic language support, with a small amount of
bytecode rewriting. But commensal compilers are not spe-
cific to Java. The .NET platform’s System.Reflection.

Emit [2] allows similar bytecode rewriting and the Expres-
sion Trees [1] feature can replace method handles.

3. Related Work
The Delite DSL compiler framework [12] uses Lightweight
Modular Staging [30] to build a Scala-level intermediate rep-
resentation (IR), which can be raised to Delite IR to express
common parallel patterns like foreach and reduce. DSLs can
provide additional domain-specific IR nodes to implement,
e.g., linear algebra transformations. The Delite runtime then
compiles parts of the IR to Scala, C++ or CUDA and heuris-
tically selects from these compiled implementations at run-
time. Delite represents the next step of investment beyond
commensal compilers; where commensal compilers reuse
existing platform infrastructure, Delite is a platform unto it-
self. The Forge meta-DSL [33] adds additional abstractions
to shield DSL authors and users from having to understand
Delite.

Truffle [43], built on top of the Graal extensible JIT com-
piler [44], aims to efficiently compile abstract syntax tree
interpreters by exploiting their steady-state type informa-
tion. Truffle optimizes languages that have already invested
in a separate front-end and interpreter by adding specialized

node implementations, while our method handle strategy en-
ables the JVM’s existing type profiling and devirtualization.
Our compiler is portable to all Java 7 JVMs, while Truffle is
dependent on Graal.

Java 7 introduced MethodHandles along with the invoke-
dynamic instruction [31] to support efficient implementa-
tion of dynamic languages. Major JVM JIT compilers imple-
ment optimizations for code using method handles ([34] de-
scribes the OpenJDK JIT compiler changes; [17] describes
J9’s). JRuby [23] and Jython [11], among other languages,
are using them for this purpose. Garcia [15] proposed us-
ing method handles encapsulating individual statements to
implement primitive specializations for Scala. JooFlux [27]
uses method handles for live code modification during de-
velopment and aspect-oriented programming. To our knowl-
edge, we are the first to use method handles for DSL code
generation.

Domain-specific languages may want to check semantic
properties not enforced by a general-purpose compiler such
as javac. Java 8 introduced type annotations [36], which
can be used to check custom properties at compile time via
an annotation processor. The Checker Framework [13] uses
type annotations to extend Java’s type system, notably to
reason about uses of null. The commensal compiler can
also perform checks as part of its compilation; for exam-
ple, StreamJIT enforces that pipelines and splitjoins do not
contain themselves during compilation.

StreamJIT is strongly inspired by StreamIt [37], a syn-
chronous dataflow language programmed with single-input,
single-output filters composed using pipelines and splitjoins
(called structured streams by analogy with structured pro-
gramming). Together, the combination of static data rates,
lack of aliasing, and structured streams allows the StreamIt
compiler [16] great insight into the program structure, allow-
ing filter fusion or fission to arrive at an optimal amount of
parallelism for a particular machine. The StreamIt compiler
is heuristically-driven and its heuristics require modification
when it is ported to a new machine. As a statically-compiled
language, StreamIt programs must commit to their structure
at compile time; applications needing parameterized streams
must compile many variants and select one at runtime.

The Feldspar DSL for signal processing [10] embeds a
low-level C-like language in Haskell, generating parallelized
C code for a C compiler; StreamHs [21] embeds StreamIt
in Haskell to add metaprogramming capabilities StreamIt
lacks, then invokes the usual StreamIt compiler. Commensal
compilers use their host language directly, so users write
programs in a familiar language and the compiled programs
(not just the language) can be embedded without using a
foreign function interface.

Other streaming languages have dropped static data rates
in favor of dynamic fork-join parallelism, becoming more
expressive at the cost of performance. XJava [24–26] is a
Java extension also closely inspired by StreamIt. Its runtime

exposes a small number of tuning parameters; [26] gives
heuristics performing close to exhaustive search. Java 8 in-
troduces java.util.stream[35], a fluent API for bulk op-
erations on collections similar to .NET’s LINQ [22]. With-
out data rates, fusion and static scheduling are impossible,
so these libraries cannot be efficiently compiled.

StreamFlex [32] is a Java runtime framework for real-
time event processing using a stream programming paradigm;
while it uses Java syntax, it requires a specially-modified
JVM to provide latency bounds.

Lime [8] is a major Java extension aiming to exploit both
conventional homogeneous multicores and heterogeneous
architectures including reconfigurable elements such as FP-
GAs. Similar to Delite, the Lime compiler generates Java
code for the entire program, plus OpenCL code for GPUs
and Verilog for FPGAs for subsets of the language, then
the Liquid Metal runtime [9] selects which compiled code
to use.

Dryad [19] is a low-level distributed execution engine
supporting arbitrary rateless stream graphs. DryadLINQ [46]
heuristically maps LINQ expressions to a stream graph for
a Dryad cluster. Spark [47] exposes an interface similar to
DryadLINQ’s, but focuses on resiliently maintaining a work-
ing set. Besides lacking data rates, these systems are more
concerned with data movement than StreamJIT’s distributed
runtime, which distributes computation.

ATLAS [42] uses autotuning to generate optimized lin-
ear algebra kernels. SPIRAL [45] autotunes over matrix ex-
pressions to generate FFTs; [14] also tunes FFTs. Hall et al
[39] use autotuning to find the best order to apply loop opti-
mizations. PetaBricks [4] uses autotuning to find the best-
performing combination of multiple algorithm implemen-
tations for a particular machine (e.g, trading off between
mergesort, quicksort and insertion sort). These systems use
autotuning to generate optimized implementations of small,
constrained kernels, whereas StreamJIT tunes larger pro-
grams.

SiblingRivalry [5] is a system for robust online autotun-
ing that divides the machine in half and runs the current best
program variant in parallel with tuning trials, ensuring at
least the current best performance. StreamJIT’s online au-
totuning could adopt this system.

Wang et al [41] apply machine learning to train a per-
formance predictor for filter fusion and fission in StreamIt
graphs, then search the space of partitions for the best pre-
dicted value, effectively learning a heuristic. StreamJIT uses
an autotuner to search the space directly to ensure perfor-
mance portability.

4. StreamJIT Overview
In this section we present an overview of StreamJIT, a
Java-embedded stream programming language derived from
StreamIt, so we can use StreamJIT as an example when ex-

A

B

C

D

(a) Pipelines compose one-to-one elements (filters, pipelines or
splitjoins) by connecting each element’s output to the input of the next
element.

S

A B C

J

(b) Splitjoins compose a splitter, a joiner, and one or more one-to-one
elements (filters, pipelines or splitjoins) by connecting the splitter’s
outputs to the inputs of the branches and the outputs of the branches to
the joiner’s input.

Figure 1: StreamJIT composition structures.

plaining how to implement a commensal compiler in Java in
Section 5.

StreamJIT programs share the same structure as StreamIt
programs, being stream graphs composed of filters, split-
ters and joiners (collectively called workers as they all have
work methods specifying their behavior). Filters are single-
input, single-output workers; despite their name, they need
not remove items from the stream. Splitters and joiners have
multiple outputs and inputs respectively. All workers declare
static peek rates stating how many items they examine on
each input, pop rates stating how many of those items they
consume, and push rates stating how many items they pro-
duce on each input for each execution of their work method.

StreamJIT programs are stream graphs built using pipelines
and splitjoins, which compose workers vertically or horizon-
tally, respectively (see Figure 1). Pipelines connect elements
in sequence, with the output of each element connected to
the input of the next (see Figure 1a). Splitjoins connect the
outputs of a splitter to the input of each of the splitjoin’s
branch and the output of each branch to the inputs of a

joiner (see Figure 1b). Splitters and joiners have multiple
outputs and inputs respectively, so they can only appear at
the beginning or end of a splitjoin. Filters, pipelines and
splitjoins are all single-input single-output, and thus can be
easily composed with one another.

Data items flow through the stream graph as it executes.
Each worker can be executed any time its input requirements
(peek and pop rates) are met, and multiple executions of
stateless workers can proceed in parallel. As all communi-
cation between workers occurs via the stream graph edges, a
compiler is free to select an execution schedule that exploits
data, task and pipeline parallelism.

5. Commensal Compilers in Java
This section presents techniques for implementing commen-
sal compilers targeting the Java platform. While this section
uses examples from StreamJIT, the focus is on the compiler’s
platform-level operations.

5.1 Front-end
Commensal compilers use their host language’s front-end
for lexing and parsing, implementing their domain-specific
abstractions using the host language’s abstraction features.
In the case of Java, the embedded domain-specific language
(EDSL) is expressed using classes, which the user can ex-
tend and instantiate to compose an EDSL program.

The basic elements of a StreamJIT program are instances
of the abstract classes Filter, Splitter or Joiner. User
subclasses pass rate information to the superclass construc-
tor and implement the work method using peek, pop and
push to read and write data items flowing through the
stream. (Filter’s interface for subclasses is shown in Fig-
ure 2; see Figure 4 for an example implementation.)

User subclasses are normal Java classes and the work

method body is normal Java code, which is compiled to
bytecode by javac as usual. By reusing Java’s front-end,
StreamJIT does not need a lexer or parser, and can use
complex semantic analysis features like generics with no
effort.

Filter contains implementations of peek, pop and
push, along with some private helper methods, allowing
work methods to be executed directly by the JVM with-
out using the commensal compiler. By using the javac-
compiled bytecodes directly, users can debug their filters
with standard graphical debuggers such as those in the
Eclipse and NetBeans IDEs. In this “interpreted mode”,
the EDSL is simply a library. (Do not confuse the EDSL
interpreted mode with the JVM interpreter. The JVM JIT
compiler can compile EDSL interpreted mode bytecode like
any other code running in the JVM.)

StreamJIT provides common filter, splitter and joiner
subclasses as part of the library. These built-in subclasses
are implemented the same way as user subclasses, but be-
cause they are known to the commensal compiler, they can

public abstract class Filter<I, O>

extends Worker<I, O>

implements OneToOneElement<I, O> {

public Filter(int popRate, int pushRate);

public Filter(int popRate, int pushRate,

int peekRate);

public Filter(Rate popRate, Rate pushRate,

Rate peekRate);

public abstract void work();

protected final I peek(int position);

protected final I pop();

protected final void push(O item);

}

Figure 2: Filter’s interface for subclasses. Subclasses pass
rate information to one of Filter’s constructors and imple-
ment work using peek, pop and push to read and write data
items flowing through the stream. See Figure 4 for an exam-
ple implementation.

be intrinsified. For example, StreamJIT’s built-in splitters
and joiners can be replaced using index transformations (see
Section 8.2).

5.2 Middle-end
A commensal compiler’s middle-end performs domain-
specific optimizations, either using simple heuristics or del-
egating decisions to an autotuner. Commensal compilers use
high-level intermediate representations (IR) tailored to their
domain. In Java, input programs are object graphs, so the IR
is typically a tree or graph in which each node decorates or
mirrors a node of the input program. Basic expression-level
optimizations such as common subexpression elimination
are left to the host platform’s JIT compiler, so the IR need
not model Java expressions or statements. (The back-end
may need to understand bytecode; see Section 5.3).

The input program can be used directly as the IR, us-
ing package-private fields and methods in the library super-
classes to support compiler optimizations. Otherwise, the IR
is built by traversing the input program, calling methods im-
plemented by the user subclasses or invoking reflective APIs
to obtain type information or read annotations. In particu-
lar, reflective APIs provide information about type variables
in generic classes, which serve as a basis for type inference
through the DSL program to enable unboxing.

The StreamJIT compiler uses the unstructured stream
graph as its intermediate representation, built from the input
stream graph using the visitor pattern. In addition to the fil-
ter, splitter or joiner instance, the IR contains input and out-
put type information recovered from Java’s reflection APIs.
Type inference is performed when exact types have been

lost to Java’s type erasure (see Section 8.3). Other IR at-
tributes support StreamJIT’s domain-specific optimizations;
these include the schedule (Section 8.1) and index functions
used for built-in splitter and joiner removal (Section 8.2).
The high-level IR does not model lower-level details such
as the expressions or control flow inside work methods, as
StreamJIT leaves optimizations at that level to the JVM JIT
compiler.

StreamJIT provides high performance by using the right
combination of data, task and pipeline parallelism for a par-
ticular machine and program. Finding the right combination
heuristically requires a detailed model of each machine the
program will run on; Java applications additionally need to
understand the underlying JVM JIT and garbage collector.
As StreamJIT programs run wherever Java runs, the heuristic
approach would require immense effort to develop and main-
tain many machine models. Instead, the StreamJIT compiler
delegates its optimization decisions to the OpenTuner exten-
sible autotuner as described in Section 9.

Autotuner use is not essential to commensal compilers.
Commensal compilers for languages with simpler optimiza-
tion spaces or that do not require maximum performance
might prefer the determinism of heuristics over an auto-
tuner’s stochastic search.

5.3 Back-end
The back-end of a commensal compiler generates code
for further compilation and optimization by the host plat-
form. A commensal compiler targeting the Java platform
can either emit Java bytecode (possibly an edited version
of the user subclasses’ bytecode) or generate a chain of
java.lang.invoke.MethodHandle objects which can be
invoked like function pointers in other languages.

The Java Virtual Machine has a stack machine architec-
ture in which bytecodes push operands onto the operand
stack, then other bytecodes perform some operation on the
operands on top of the stack, pushing the result back on the
stack. Each stack frame also contains local variable slots
with associated bytecodes to load or store slots from the top
of the stack. Taking most operands from the stack keeps Java
bytecode compact. In addition to method bodies, the Java
bytecode format also includes symbolic information about
classes, such as the class they extend, interfaces they im-
plement, and fields they contain. Commensal compilers can
emit bytecode from scratch through libraries such as ASM
[7] or read the bytecode of existing classes and emit a mod-
ified version. Either way, the new bytecode is passed to a
ClassLoader to be loaded into the JVM.

Method handles, introduced in Java 7, act like typed func-
tion pointers for the JVM. Reflective APIs can be used to
look up a method handle pointing to an existing method, then
later invoked through the method handle. Method handles
can be partially applied as in functional languages to produce
a bound method handle that takes fewer arguments. Method
handles are objects and can be used as arguments like any

private static void loop(MethodHandle loopBody,

int begin, int end, int increment) throws

Throwable {

for (int i = begin; i < end; i += increment)

loopBody.invokeExact(i);

}

Figure 3: This loop combinator invokes the loopBody argu-
ment, a method handle taking one int argument, with every
increment-th number from begin to end. StreamJIT uses
similar loop combinators with multiple indices to implement
a schedule of filter executions (see Section 8.1).

other object, allowing for method handle combinators (see
the loop combinator in Figure 3). These combinators can be
applied repeatedly to build a chain of method handles encap-
sulating arbitrary behavior. The bound arguments are con-
stants to the JVM JIT compiler, so if a method handle chain
is rooted at a constant (such as a static final variable),
the JVM JIT can fully inline through all the method handles,
effectively turning method handles into a code generation
mechanism.

StreamJIT uses bytecode rewriting to enable use of
method handles for code generation. The StreamJIT com-
piler copies the bytecode of each filter, splitter or joiner
class that appears in the stream graph, generating a new
work method with calls to peek, push and pop replaced by
invocations of new method handle arguments. To support
data-parallelization, initial read and write indices are passed
as additional arguments and used in the method handle in-
vocations. (See Section 8.4 for details and Figure 11 for an
example result.)

For each instance in the stream graph, a method handle
is created pointing to the new work method. The method
handle arguments introduced by the bytecode rewriting are
bound to method handles that read and write storage objects
(see Section 8.5). The resulting handle (taking initial read
and write indices) is bound into loop combinators similar to
the one in Figure 3 to implement the schedule, producing one
method handle chain per thread. To make the root method
handles of these chains compile-time constants for the JVM
JIT, the StreamJIT compiler emits bytecode that stores them
in static final fields and immediately calls them.

Because the root method handles are JIT-compile-time
constants, the methods they point to will not change, so
the JVM JIT can inline the target methods. The bound ar-
guments are also constants, so all the method handles will
inline all the way through the chain, loops with constant
bounds can be unrolled, and the addresses of the storage ar-
rays can be baked directly into the generated native code. Us-
ing method handles for code generation is easier than emit-
ting bytecode, yet produces faster machine code.

class LowPassFilter

extends Filter<Float, Float> {

private final float rate, cutoff;

private final int taps, decimation;

private final float[] coeff;

LowPassFilter(float rate, float cutoff,

int taps, int decimation) {

//pop, push and peek rates

super(1 + decimation, 1, taps);

/* ...initialize fields... */

}

public void work() {

float sum = 0;

for (int i = 0; i < taps; i++)

sum += peek(i) * coeff[i];

push(sum);

for (int i = 0; i < decimation; i++)

pop();

pop();

}

}

Figure 4: LowPassFilter from the FMRadio benchmark.
Peeks (nonconsuming read) at its input, pushes its output,
and pops (consuming read) the input it is finished with.
Pushes and pops can be freely intermixed, but the peek-push-
pop style is common in our benchmarks.

6. StreamJIT API and Workflow
We now break down the StreamJIT workflow to describe
what occurs at development time (when the user is writing
their code), at compile time, and at run time.

Development time Users write workers by subclassing
Filter, StatefulFilter, Splitter, or Joiner, passing
their data rates to the superclass constructor. The worker’s
computation is specified by the work method, operating on
data items read from input with the pop and peek methods
and writing items to the output with push. (See Figure 4.)
Work methods may contain nearly arbitrary Java code (in-
cluding library calls), with some restrictions to permit auto-
matic parallelization:

• Filters maintaining state must extend StatefulFilter

to avoid being data-parallelized.
• To avoid data races, once a data item is pushed to the

output, workers should not modify it, and to avoid dead-
locking with the StreamJIT runtime, workers should not
perform their own synchronization.

StreamJIT does not attempt to verify these properties.
While simple workers can be easily verified, workers that
call into libraries would require sophisticated analysis.

private static final class BandPassFilter

extends Splitjoin<Float, Float> {

private BandPassFilter(float rate,

float low, float high, int taps) {

super(new DuplicateSplitter<Float>(),

new SubtractJoiner<Float>(),

new LowPassFilter(rate, low, taps, 0),

new LowPassFilter(rate, high, taps, 0))

);

}

}

Figure 5: BandPassFilter from the FMRadio benchmark.
This splitjoin is instantiated once for each band being pro-
cessed.

Users also write code to assemble stream graphs using
Pipelines and Splitjoin objects, which contain filters
or other pipelines or splitjoins. In addition to instantiating
Pipeline and Splitjoin, users can subclass them to facil-
itate reuse in multiple places in the stream graph or in other
stream programs (see Figure 5).

Finally, the constructed stream graph along with in-
put and output sources (e.g., input from an Iterable

or file, output to a Collection or file) is passed to a
StreamCompiler for execution. The graph will execute
until the input is exhausted (when all workers’ input rates
cannot be satisfied), which the application can poll or
wait for using a CompiledStream object returned by the
StreamCompiler.

Importantly, stream graph construction and compilation
occurs at run time, and so can depend on user input; for
example, a video decoder can be instantiated for the video’s
size and chroma format. In StreamIt, a separate stream graph
must be statically compiled for each set of parameters, then
the correct graph loaded at run time, leading to code bloat
and long compile times when code changes are made (as
each graph is recompiled separately).

Compile time StreamJIT does not make any language ex-
tensions, so user code (both workers and graph construc-
tion code) is compiled with a standard Java compiler such
as javac, producing standard Java class files that run on
unmodified JVMs. Thus integrating StreamJIT into an ap-
plication’s build process merely requires referencing the
StreamJIT JAR file, without requiring the use of a separate
preprocessor or compiler.

Run time At run time, user code constructs the stream
graph (possibly parameterized by user input) and passes it to
a StreamCompiler. During execution, there are two levels
of interpretation or compilation. The StreamJIT level oper-
ates with the workers in the stream graph, while the JVM
level operates on all code running in the JVM (StreamJIT

Figure 6: StreamJIT workflow. At compile time, user worker
classes and graph construction code are compiled by javac

just like the surrounding application code. At runtime, the
StreamJIT interpreter runs javac’s output as is, while the
compiler optimizes and builds a method handle chain. Ei-
ther way, the executed code can be compiled by the JVM
JIT like any other code. The compiler can optionally report
performance to the autotuner and recompile in a new config-
uration (see Section 9).

or otherwise). (See Figure 6.) The two levels are indepen-
dent: even when StreamJIT is interpreting a graph, the JVM
is switching between interpreting bytecode and running just-
in-time-compiled machine code as usual for any Java appli-
cation. The user’s choice of StreamCompiler determines
whether StreamJIT interprets or compiles the graph.

The StreamJIT runtime can partition StreamJIT programs
to run in multiple JVMs (usually on different physical ma-
chines). The partitions are then interpreted or compiled in
the same way as the single-JVM case, with data being sent
via sockets between partitions. The partitioning is decided
by the autotuner, as described in Section 10.

7. StreamJIT Interpreted Mode
In interpreted mode, the StreamJIT runtime runs a fine-
grained pull schedule (defined in [37] as executing upstream
workers the minimal number of times required to execute
the last worker) on a single thread using the code as com-
piled by javac, hooking up peek, pop and push behind the
scenes to operate on queues. Because interpreted mode uses
the original bytecode, users can set breakpoints and inspect
variables in StreamJIT programs with their IDE’s graphical
debugger.

8. The StreamJIT Commensal Compiler
In compiled mode, the StreamJIT commensal compiler takes
the input stream graph, applies domain-specific optimiza-
tions, then (using worker rate declarations) computes a par-
allelized schedule of worker executions. To implement this
schedule, the compiler emits new bytecode from the javac

bytecode by replacing peek, pop and push with invocations
of method handles that read and write backing storage, re-
flects these new work methods as method handles, and com-
poses them with storage implementations and loop combi-

F0 filter

S0 splitter

F1filter F2 filter

J0joiner

splitjoin

pipeline

Figure 7: A simple stream graph in which a filter and a
splitjoin are enclosed in a pipeline. This graph’s data rates
are shown in Figure 9.

nators. The StreamJIT runtime then repeatedly calls these
method handles until the schedule’s input requirements can-
not be met, after which execution is transferred to the in-
terpreter to process any remaining input and drain buffered
data. See Section 5.3 for background information on how
bytecode and method handles are uesd in Java-based com-
mensal compilers.

This section describes the compiler flow in temporal or-
der. Sections 8.4 and 8.7 describe code generation; the other
sections explain StreamJIT’s domain-specific optimizations.
In this section we note which decisions are made by the au-
totuner, but defer discussion of the search space parameteri-
zation until Section 9. All examples are based on the stream
graph in Figure 7.

8.1 Fusion and scheduling
Fusion The compiler first converts the input stream graph
made of pipelines and splitjoins into an unstructured stream
graph containing only the workers (from Figure 7 to Fig-
ure 8a). The compiler then fuses workers into groups (from
Figure 8a to Figure 8b). Groups have no internal buffering,
while enough data items are buffered on inter-group edges
to break the data dependencies between groups (software
pipelining [29]). This enables independent data-paralleliz-
ation of each group without synchronization. Each worker
initially begins in its own group. As directed by the auto-
tuner, each group may be fused upward, provided it does not
peek and all of its predecessor workers are in the same group.
Peeking workers are never fused upward as they would in-
troduce buffering within the group. Stateful filters (whose
state is held in fields, not as buffered items) may be fused,
but their statefulness infects the entire group, preventing it
from being data-parallelized.

W0

W1

W2 W3

W4

(a) The unstructured form of the example graph in Figure 7. The
pipeline and splitjoin have been discarded.

Group0

Group1 Group2

Group3

W0

W1

W2 W3

W4

(b) The example graph from Figure 7 after fusion. Workers W0 and W1

are fused together.

Figure 8: Grouping and fusion

Scheduling To execute with minimal synchronization, the
compiler computes a steady-state schedule of filter execu-
tions which leaves the buffer sizes unchanged [20]. Com-
bined with software pipelining between groups, synchro-
nization is only required at the end of each steady-state
schedule. The buffers are filled by executing an initialization
schedule. When the input is exhausted, the stream graph is
drained by migrating buffered data and worker state to the
interpreter, which runs for as long as it has input. Draining
does not use a schedule, but migration to the interpreter uses
liveness information tracking the data items that are live in
each buffer.

The compiler finds schedules by formulating integer lin-
ear programs. The variables are execution counts (of work-
ers or groups); the constraints control the buffer delta using
push and pop rates as coefficients. For example, to leave the
buffer size unchanged between worker x1 with push rate 3
and worker x2 with pop rate 4, the compiler would add the
constraint 3x1 − 4x2 = 0; to grow the buffer by (at least)
10 items, the constraint would be 3x1−4x2 ≥ 10. (See Fig-

W0

pop 1
push 1

W1

pop 1
push 1, 3

W2

pop 1
push 2

W3

pop 6
push 4

W4

pop 1, 1
push 5

W0− W1 = 0
W1− W2 = 0

3W1− 6W3 = 0
2W2− W4 = 0
4W3− W4 = 0

W0 ≥ 0
W1 ≥ 0
W2 ≥ 0
W3 ≥ 0
W4 ≥ 0

W0+ W1+ W2+ W3+ W4 ≥ 1

Figure 9: An intra-group steady-state schedule example,
showing the integer linear program generated if all workers
in Figure 7 are fused into one group. Each variable repre-
sents the number of executions of the corresponding worker
in the steady-state schedule. The first five constraints (one
per edge) enforce that the buffer sizes do not change af-
ter items are popped and pushed. The second five (one per
worker) enforce that workers do not execute negative times,
and the last enforces that at least one worker is executed (en-
suring progress is made). Inter-group scheduling is the same,
except with groups instead of workers.

ure 9 for a steady-state example.) The resulting programs are
solved using lp solve2. While integer linear programming is
NP-hard, and thus slow in the general case, in our experience
StreamJIT schedules are easily solved.

Steady-state scheduling is hierarchical. First intra-group
schedules are computed by minimizing the total number of
executions of the group’s workers, provided each worker ex-

2 http://lpsolve.sourceforge.net/

ecutes at least once and buffer sizes are unchanged. Then
the inter-group schedule minimizes the number of execu-
tions of each group’s intra-group schedule, provided each
group executes at least once and buffer sizes are unchanged
(see Figure 9). The inter-group schedule is multiplied by an
autotuner-directed factor to amortize the cost of synchroniz-
ing at the end-of-steady-state barrier.

The compiler then computes an initialization inter-group
schedule to introduce buffering between groups as stated
above. Each group’s inputs receive at least enough buffer-
ing to run a full steady-state schedule (iterations of the intra-
group schedule given by the inter-group schedule), plus ad-
ditional items if required to satisfy a worker’s peek rate. The
initialization and steady-state schedules share the same intra-
group schedules.

Based on the initialization schedule, the compiler com-
putes the data items buffered on each edge. This liveness in-
formation is updated during splitter and joiner removal and
used when migrating data from initialization to steady-state
storage and during draining (all described below).

8.2 Built-in splitter and joiner removal
The built-in RoundrobinSplitter, DuplicateSplitter,
and RoundrobinJoiner (and their variants taking weights)
classes split or join data in predictable patterns without mod-
ifying them. As directed by the autotuner, these workers can
be replaced by modifying their neighboring workers to read
(for splitters) or write (for joiners) in the appropriate pat-
tern. For example, splitter S0 in Figure 7 has two down-
stream workers and it distributes one item to its first child
(F1) and 3 items to its second child (F2) in turn. It can be
removed by modifying its downstream workers to read from
indices 4i and 4∗bi/3c+i%3+1 in its upstream storage (see
Figure 10). Joiner removal results in similar transformations
of write indices. Nested splitjoins may result in multiple re-
movals, in which the index transformations are composed.

Instances of the built-in Identity filter, which copies its
input to its output, could also be removed at this stage (with
no index transformation), but the current implementation
does not.

When a worker is removed, liveness information from
its input edge(s) is propagated to the input edges of its
downstream workers via simulation. Because the inter-
preter does not perform removal, the liveness information
remembers on which edge the data item was originally
buffered and its index within that buffer so it can be re-
turned to its original location for draining. When removing a
DuplicateSplitter, the compiler duplicates the liveness
information, but marks all but one instance as a duplicate so
only one item is restored when draining.

Splitter and joiner removal is performed after scheduling
to ensure each removed worker executes an integer number
of times (enforced by the ILP solver). Otherwise, splitters
and joiners may misdistribute their items during initializa-
tion or draining.

W0

storage 0

W2 W3

storage 1

Figure 10: The example stream graph from Figure 7 after
splitter and joiner removal. W2 and W3 read directly from
W0’s output storage and write directly into the overall graph
output storage, avoiding the copies performed by the splitter
and joiner.

8.3 Type inference and unboxing
StreamJIT workers define their input and output types using
Java generics. The types of a Filter<Integer, Integer>

can be recovered via reflection, but reflecting a Filter<I,O>
only provides the type variables, not the actual type argu-
ments of a particular instance. Using the Guava library’s
TypeToken [40], the compiler follows concrete types through
the graph to infer the actual arguments. For example, if a
Filter<Float, Integer> is upstream of a Filter<T,

List<T>>, the compiler can infer T to be Integer. Stor-
age types are then inferred to be the most specific common
type among the output types of workers writing to that stor-
age. This analysis depends on finding at least some concrete
types via reflection; if the entire graph’s types are type vari-
ables, the analysis cannot recover the actual types. In prac-
tice, most graphs have enough “inference roots” to find uses
of wrapper types for unboxing.

After type inference, worker input and output types and
edge storage types may be unboxed, as directed by the au-
totuner. Input, output and storage decisions are independent;
the JVM will introduce boxing or unboxing later if, e.g., a
storage location was unboxed while a downstream worker’s
input was not. (Primitives are stored more compactly than
wrapper objects, which may make up for the boxing cost
with better cache usage.) Separate unboxing decisions are
made for each instance of a worker class (indeed, each in-
stance may have different input and output types). However,
the multiple outputs or inputs of a splitter or joiner instance
will either all be unboxed or not unboxed.

8.4 Bytecode generation
The original worker bytecode as compiled by javac (and
used by the interpreter) assumes a serial execution strategy,
popping and pushing items in queues. To run multiple iter-
ations of a worker in parallel, the compiler must transform
the bytecode. For each worker class, the compiler creates an
archetype class containing one or more static archetypal
work methods. One archetypal work method is created for
each pair of actual input and output types for workers of
that class; for example, a HashCodeFilter<T, Integer>

could result in generation of HashCodeFilterArchetype
containing workObjectInteger, workIntegerInteger

and workObjectint methods. Because workers may use
private fields, a seperate field holder class is also created to
work around access control, containing copies of the worker
class fields accessible by the archetype class.

All filter work methods share the signature void

(FieldHolderSubclass state, MethodHandle

readHandle, MethodHandle writeHandle, int

readIndex, int writeIndex). The read and write
handles provide indexed access to the worker’s input and
output channels, while the indices define which iteration
of the worker is being executed. If a worker has pop rate
o and push rate u, the tth iteration has read index to and
write index tu. Splitters and joiners have multiple outputs
or inputs respectively, so their work methods take arrays of
indices and their read or write handles take an additional
parameter selecting the channel.

The original worker’s work method bytecode is cloned
into each archetypal work method’s body. References to
worker class fields are remapped to state holder fields.
peek(i) and pop() calls are replaced with read handle
invocations at the read index (plus i for peeks); pop() ad-
ditionally increments the read index. Similarly, push(x) is
replaced by writing x at the current write index via the write
handle, then incrementing the write index. If the input or out-
put types have been unboxed, existing boxing or unboxing
calls are removed. Figure 11 shows the result of rewriting
the example filter from Figure 4.

A bytecode optimization is performed for the common
case of filters that peek, push and pop in that order (as in
the example in Figure 4). The pops are translated into un-
used read handle invocations. If splitter or joiner removal
introduced index transformations, the JVM JIT cannot al-
ways prove the read handle calls to be side-effect-free due
to potential index-out-of-bounds exceptions. The StreamJIT
compiler knows the indices will always be valid based on the
schedule, so the unused invocations can be safely removed.
The JVM can then remove surrounding loops and read in-
dex increments as dead code. This is the only bytecode-level
optimization the StreamJIT compiler performs; teaching the
JVM JIT about more complex index expressions may obvi-
ate it.

class LowPassFilterArchetype {

public static void workfloatfloat(

LowPassFilterStateHolder state,

MethodHandle readHandle,

MethodHandle writeHandle,

int readIndex, int writeIndex) {

float sum = 0;

for (int i = 0; i < state.taps; i++)

sum +=

readHandle.invokeExact(readIndex + i)

* state.coeff[i];

writeHandle.invokeExact(writeIndex, sum);

writeIndex++;

for (int i = 0; i < state.decimation; i++)

{

readHandle.invokeExact(readIndex);

readIndex++;

}

readHandle.invokeExact(readIndex);

readIndex++;

}

}

Figure 11: LowPassFilterArchetype: the result of bytecode
rewriting on LowPassFilter from Figure 4, before perform-
ing StreamJIT’s only bytecode-level optimization (see the
text). StreamJIT emits bytecode directly; for purposes of ex-
position, this figure shows the result of decompiling the gen-
erated bytecode back to Java.

8.5 Storage allocation
The compiler allocates separate storage for the initialization
and steady-state schedules. To compute initialization buffer
sizes, the compiler multiplies the initialization inter-group
schedule by the intra-group schedules to find each worker’s
total number of executions, then multiplies by the push rate
to find the total items written to each storage. Steady-state
buffer sizes are computed similarly using the steady-state
inter-group schedule, but additional space is left for the
buffering established by the initialization schedule. The stor-
age implementation is a composition of backing storage with
an addressing strategy. It provides read and write handles
used by archetypal work methods, plus an adjust handle that
performs end-of-steady-state actions.

The actual backing storage may be a plain Java array, or
for primitive types, a direct NIO Buffer or native mem-
ory allocated with sun.misc.Unsafe. Each implementa-
tion provides read and write method handles taking an index.
Steady-state backing storage implementations are chosen by
the autotuner on a per-edge basis; initialization always uses
Java arrays.

Addressing strategies translate worker indices into phys-
ical indices in backing storage. Direct addressing simply
passes indices through to the backing storage and is used
during initialization and for storage fully internal to a group
(read and written only by the group). Storage on other edges
needs to maintain state across steady-state executions (to
maintain software pipelining). Circular addressing treats the
backing storage as a circular buffer by maintaining a head in-
dex; at the end of each steady-state execution, elements are
popped by advancing the index. Double-buffering alternates
reading and writing between two separate backing storage
implementations at the end of each steady-state execution,
but can only be used when the storage is fully external to all
groups that use it (read or written but not both), as otherwise
items written would need to be read before the buffers are
flipped. Steady-state addressing strategies are chosen by the
autotuner on a per-edge basis.

Data parallelization assumes random access to storage,
including the overall input and output of the stream graph.
If the overall input edge is part of the compilation and the
source provides random access (e.g., a List or a memory-
mapped file), the storage normally allocated for that edge
may be replaced by direct access to the source; otherwise
data is copied from the source into the storage. This copy-
avoiding optimization is important because the copy is per-
formed serially at the end-of-steady-state barrier. A similar
optimization could be performed for random-access output
sinks, but the current implementation does not.

8.6 Work allocation
The compiler then divides the steady-state inter-group sched-
ule among the cores, as directed by the autotuner. The buffer-
ing established by the initialization schedule ensures there
are no data dependencies between the groups, so the com-
piler is free to choose any allocation, except for groups con-
taining a stateful filter, which must be allocated to a single
core to respect data-dependence on the worker state. The
initialization schedule itself does not have this guarantee, so
all work is allocated to one core in topological order.

8.7 Code generation
To generate code to run the initialization and steady-state
schedules, the compiler builds a method handle chain for
each core.

• For each worker, a new instance of its corresponding state
holder class is initalized with the values of the worker’s
fields. The archetypal work method for the worker is
reflected as a method handle and the state holder instance,
plus the read and write handles for the storage used by
the worker, are bound (the handle is partially applied),
yielding a handle taking a read and write index.
• Each worker handle is bound into a worker loop combi-

nator that executes a range of iterations of the worker,

computing the read and write indices to pass to the
worker handle using the worker’s pop and push rates.
• The worker loop handles for all workers in a group are

then bound into a group loop combinator that executes
a range of interations of the intra-group schedule, multi-
plying the group iteration index by the intra-group sched-
ule’s worker execution counts to compute the worker it-
eration indices to pass to the worker loops.
• Finally, the group’s iteration range allocated for that core

is bound into the group loop and the group loops are
bound by a sequence combinator to form a core handle.

8.8 Preparing for run time
At the end of compilation, the compiler creates a host in-
stance, which is responsible for managing the compiled
stream graph through the lifecycle phases described in Sec-
tion 8.1: initialization, steady-state and draining. From the
compiler, the host receives the initialization and steady-state
core code handles, liveness information, and counts of the
items read and written from and to each graph input and
output. The host creates the threads that execute the method
handles and the barrier at which the threads will synchro-
nize at the end of each steady-state iteration. The barrier
also has an associated barrier action, which is executed by
one thread after all threads have arrived at the barrier but
before they are released.

The code actually run by each thread is in the form of
newly-created Runnable proxies with static final fields
referencing the core code method handles. Because the han-
dles are compile-time constant, the JVM JIT can inline
through them and their constituent handles, including ob-
ject references bound into the handle chain. For example, a
circular buffer storage computes a modulus to contain the
index in the bounds of the backing storage, but the JVM
JIT sees the modulus field as a constant and can avoid gen-
erating a division instruction. The JVM’s visibility into the
generated code is essential to good performance.

8.9 Run time
At run time, threads run core code and synchronize at the
barrier. The behavior of each thread and of the barrier action
is managed using SwitchPoint objects, which expose the
lifecycle changes to the JVM. The JVM will speculatively
compile assuming the switch point points to its first target,
then recompile when the switch point is invalidated, avoid-
ing branching on each call. The first switch point is invali-
dated when transitioning to the steady-state after initializa-
tion and the second is invalidated after draining is complete.
Figures 12 and 13 show thread behavior and barrier action
behavior, respectively.

Initialization Initially, the core code is a no-op, so all
threads immediately reach the barrier. The barrier action
calls the initialization core handle after reading data from
graph inputs. Any output produced is written to graph out-

switch point 1

no-op switch point 2

run steady-state
core code

no-op

Figure 12: Thread behavior during the host lifecycle. Initial-
ization and draining are single-threaded, so they occur at the
barrier action. no-op (no operation) indicates a method han-
dle that does nothing.

switch point 1

run init core code,
migrate data from init
to steady-state storage,

read inputs

switch point 2

write outputs,
adjust storage,
read inputs or

drain

no-op
(unreached)

Figure 13: Barrier action behavior during the host lifecycle.
In the steady-state, if insufficient inputs can be read for
the next steady-state iteration, draining begins immediately.
After draining is complete, the threads stop before returning
to the barrier, so the third method handle (rightmost node in
the figure) is never called.

puts, data buffered in initialization storage is migrated to
steady-state storage using the liveness information, and input
is read for the steady-state. The first switch point is then in-
validated to transition to the steady-state phase and the cores
are released from the barrier.

Steady-state In the steady-state phase, the core code is the
core method handle built during compilation. When all cores
come to the barrier after running their core handle, output
is written to the graph outputs, storage is adjusted (e.g.,
circular buffer head indices are incremented), and input is
read from graph inputs to be used in the next cycle. This
phase continues until not enough input remains to execute
the steady-state code, at which point draining begins (still in
the barrier action).

Draining During draining, data buffered in steady-state
storage is migrated into queues for the interpreter based on
the liveness information. The interpreter runs until the in-
put is exhausted or progress stops due to unsatisfiable in-
put (peek and pop) rates. When online autotuning, any re-
maining buffered data is passed to the StreamJIT runtime for
use in a future compilation. The StreamJIT runtime requests

the threads to stop, the second switch point is invalidated,
and the cores are released from the barrier. Invalidating the
second switch point makes the core code a no-op, to make
race conditions between the cores and the StreamJIT runtime
harmless.

9. Autotuning
In place of heuristics, the StreamJIT compiler uses the
OpenTuner [6] extensible autotuner to make its optimiza-
tion decisions. The compiler defines the tuner’s search space
with a number of parameters based on the stream graph be-
ing compiled. The tuner requests throughput measurements
for a particular set of values (called a configuration), allo-
cating trials between different search techniques according
to their payoff. Tuning can be performed offline, in which
the program state is reset for each trial, or online, in which
the stream graph is recompiled preserving the state of the
previous compilation.

Search space For each non-peeking worker in the graph, a
boolean parameter determines whether that worker is fused
upward. For each built-in splitter or joiner in the graph, a
boolean parameter determines whether that splitter or joiner
is removed. For each worker, two boolean parameters con-
trol unboxing that worker’s input and output types. For each
edge, one boolean parameter controls whether that edge’s
storage is unboxed, one enumerated parameter selects the
backing storage (Java array, NIO Buffer or native mem-
ory via sun.misc.Unsafe), and one enumerated parame-
ter selects between double-buffering and circular addressing
strategies if that storage is not internal to a group.

Core allocation is controlled by four parameters per
worker: a count n and permutation parameter that define
a subset of the available cores to allocate to (the first n cores
in the permutation), plus a bias count b and a bias fraction
f between 0 and 1. The parameters corresponding to the
first worker in each group are selected. Stateful groups can-
not be data-parallelized, so if the group contains a stateful
worker, all group executions in the inter-group schedule are
assigned to the first core in the permutation. Otherwise, the
group executions are divided equally among the n cores in
the subset. Then the first b cores (or n − 1 if b ≥ n) have
f times their allocation removed and redistributed equally
among the other n− b cores. Biasing allows the autotuner to
load-balance around stateful groups while preserving equal
allocation for optimal data-parallelization.

Interactions between parameters may leave some param-
eters unused or ignored in some configurations; the search
space has varying dimensionality. For example, if after (not)
fusing preceding groups, a group has more than one prede-
cessor, it cannot be fused upward, so the corresponding fu-
sion parameter is ignored. Throughput is very sensitive to
the core allocation, and both fusion and removal parame-
ters affect which sets of core allocation parameters are used.
Unused sets accumulate random mutations, which can pre-

vent the tuner from recognizing profitable changes in fusion
or removal because the resulting core allocation is poor. To
address this, all unused core allocation parameters in each
group are overwritten with the used set’s values, which em-
pirically gives better tuning performance. More elegant ways
to search spaces of varying dimensionality are a topic for fu-
ture work in optimization.

Custom techniques In addition to its standard optimiza-
tion algorithms, OpenTuner can be extended with custom
techniques, which StreamJIT uses in two ways. One tech-
nique suggests three fixed configurations with full fusion, re-
moval and unboxing, equal allocation to all cores (maximum
data parallelism), and multipliers of 128, 1024 and 4096.
These configurations help the tuner find a “pretty good” por-
tion of the search space more quickly than by testing random
configurations.

For most stream graphs, fusion, splitter and joiner re-
moval, and unboxing are profitable at all but a few places
in the graph. Fusion, for example, is usually good except
for stateful workers whose state infects their entire group,
preventing data parallelism. To convey this knowledge to
the tuner, three custom techniques modify the current best
known configuration by applying full fusion, removal or un-
boxing. If the result has already been tested, the techniques
proceed to the second-best configuration and so on. These
techniques keep the tuner in a portion of the search space
more likely to contain the best configuration, from which the
tuner can deviate in a small number of parameters where the
optimizations are not profitable. However, these techniques
are merely suggestions. Because the tuner allocates trials to
techniques based on their expected payoff, if for example a
graph contains many stateful workers, the tuner will learn to
ignore the full-fusion technique.

Online autotuning Online tuning works similarly to of-
fline tuning, except that graph edges may contain buffered
items left behind by the previous execution. The initializa-
tion schedule cannot remove buffering from within fused
groups because it shares intra-group code with the steady-
state schedule, so the downstream groups on those edges
cannot be fused upward. Removal of splitters and joiners on
these edges is also disabled due to a bug in the implementa-
tion. While this limits online tuning performance compared
to offline tuning (which never has previous buffered items),
the graph is drained as completely as possible before recom-
piling, so usually only a few edges are affected.

10. Automatic Distribution
To scale to multiple nodes, the StreamJIT runtime partitions
the stream graph into connected subgraphs, which are com-
piled or interpreted separately. Because StreamJIT uses an
autotuner to find the partitioning instead of heuristics, imple-
menting distribution only requires defining some autotuning
parameters and writing the communication code.

Figure 14: Partitioning a stream graph for distribution.
Hatched workers are keys; arrows represent the cut-distance
parameters. Both inner splitjoins are treated as single work-
ers; the left does not have a cut-distance parameter as it’s
immediately followed by another key.

Each partition is a connected subgraph and the graph of
partitions is acyclic. (See Figure 14.) Compiled partitions ex-
ecute dynamically once enough input to execute their sched-
ule is available. Because each worker is placed in only one
partition, it is not possible to data-parallelize a worker across
multiple nodes; adding nodes exploits task and pipeline par-
allelism only. As a workaround, the user can introduce a
roundrobin splitjoin (simulating data parallelism as task par-
allelism), allowing the autotuner to place each branch in a
different partition, allowing task parallelism across nodes.

Autotuning partitioning The partitioning is decided by the
autotuner. Usually one partition per node provides the best
throughput by minimizing communication, but sometimes
the better load-balancing allowed by using more partitions
then nodes overcomes the extra communication cost of cre-
ating extra data flows.

A naive parameterization of the search space would use
one parameter per worker specifying which node to place it
on, then assemble the workers on each node into the largest
partitions possible (keeping the workers in a partition con-
nected). Empirically this results in poor autotuning perfor-
mance, as most configurations result in many small parti-
tions spread arbitrarily among the nodes. Small partitions in-
hibit fusion, resulting in inefficient data-parallelization, and
poor assignment causes a large amount of inter-node com-
munication.

Instead, some workers in the graph are selected as keys
(highlighted in Figure 14) which are assigned to nodes. Ev-
ery kth worker in a pipeline is a key, starting with the first.

Splitjoins containing s or fewer workers total are treated as
though they are single workers; otherwise, the splitter, joiner,
and first worker of each branch are keys and key selection re-
curses on each branch. For each key, one parameter specifies
which node to place it on and another parameter selects how
many workers after this key to cut the graph (0 up to the
distance to the next key). If there are too many partitions,
most configurations have unnecessary communication back
and forth between nodes, but if there are too few partitions,
load balancing becomes difficult. We chose k = 4 and s = 8
empirically as a balance that performs well on our bench-
marks. These constants could be meta-autotuned for other
programs.

Given a configuration, the graph is then cut at the selected
cut points, resulting in partitions containing one key each,
which are then assigned to nodes based on the key’s assign-
ment parameter. Adjacent partitions assigned to the same
node are then combined unless doing so would create a cycle
among the partition graph (usually when a partition contains
a splitter and joiner but not all the intervening branches). The
resulting partitions are then compiled and run.

Sockets Partitions send and receive data items over TCP
sockets using Java’s blocking stream I/O. Each partition ex-
poses its initialization and steady-state rates on each edge,
allowing the required buffer sizes to be computed using the
ILP solver, which avoids having to synchronize to resize
buffers. However, execution of the partitions is dynamically
(not statically) scheduled to avoid a global synchronization
across all nodes. The runtime on the node initiating the com-
pilation additionally communicates with each partition to
coordinate draining, which proceeds by draining each par-
tition in topological order. During draining, buffers dynam-
ically expand to prevent deadlocks in which one partition is
blocked waiting for output space while a downstream parti-
tion is blocked waiting for input on a different edge (which
reading would free up output space). When using online au-
totuning, the initiating node then initiates the next compila-
tion.

11. Evaluation
11.1 Implementation effort
Excluding comments and blank lines, StreamJIT’s source
code consists of 33,912 lines of Java code (26,132 ex-
cluding benchmarks and tests) and 1,087 lines of Python
code (for integration with OpenTuner, which is written in
Python); see Figure 15 for a breakdown. In comparison, the
StreamIt source code (excluding benchmarks and tests) con-
sists of 266,029 lines of Java, most of which is based on
the Kopi Java compiler with custom IR and passes, plus a
small amount of C in StreamIt runtime libraries. StreamIt’s
Eclipse IDE plugin alone is 30,812 lines, larger than the
non-test code in StreamJIT.

User API (plus private interpreter plumbing) 1,213
Interpreter 1,032
Compiler 5,437
Distributed runtime 5,713
Tuner integration 713
Compiler/interp/distributed common 4,222
Bytecode-to-SSA library 5,166
Utilities (JSON, ILP solver bindings etc.) 2,536
Total (non-test) 26,132
Benchmarks and tests 7,880
Total 33,912

Figure 15: StreamJIT Java code breakdown, in non-blank,
non-comment lines of code. An additional 1,087 lines of
Python are for tuner integration.

11.2 Comparison vs. StreamIt
Single-node offline-tuned StreamJIT throughput was com-
pared with StreamIt on ten benchmarks from the StreamIt
benchmark suite [38]. When porting, the algorithms used in
the benchmarks were not modified, but some implementa-
tion details were modified to take advantage of StreamJIT
features. For example, where the StreamIt implementations
of DES and Serpent use a roundrobin joiner immediately fol-
lowed by a filter computing the exclusive or of the joined
items, the StreamJIT implementations use a programmable
joiner computing the exclusive or. The ported benchmarks
produce the same output as the originals modulo minor dif-
ferences in floating-point values attributable to Java’s differ-
ing floating-point semantics.

Benchmarking was performed on a cluster of 2.4GHz
Intel Xeon E5-2695v2 machines with two sockets and 12
cores per socket and 128GB RAM. HyperThreading was
enabled but not used (only one thread was bound to each
core).

StreamIt programs were compiled with strc --smp 24

-O3 -N 1000 benchmark.str. The emitted C code was
then compiled by gcc (Ubuntu/Linaro 4.6.3-1ubuntu5)

4.6.3 with gcc -std=gnu99 -O3 -march=corei7-avx

-mtune=corei7-avx. strc was built with the SMP back-
end’s FAKE IO option enabled, which replaces file output
with a write to a volatile variable; this ensures I/O does
not affect performance while preventing GCC from optimiz-
ing code away. strc’s -N option adds instrumentation to
count the CPU cycles per output generated by the stream
graph when executing the steady-state schedule, which is
converted to nanoseconds per output by multiplying by the
CPU cycle time. StreamIt is no longer maintained and strc

fails to compile MPEG2 and Vocoder, so while we present
StreamJIT performance, we cannot compare on those bench-
marks.

StreamJIT programs ran on 64-bit OpenJDK build 1.8.0-
ea-b124. StreamJIT programs were autotuned for 12 hours
in three independent sessions. In each trial, the program is

benchmark StreamJIT StreamIt relative perf
Beamformer 2,320,186 1,204,215 1.9
BitonicSort 9,771,987 6,451,613 1.5
ChannelVocoder 551,065 796,548 0.7
DCT 23,622,047 6,434,316 3.7
DES 17,441,860 6,469,003 2.7
FFT 25,210,084 2,459,016 10.3
Filterbank 924,499 1,785,714 0.5
FMRadio 2,272,727 2,085,143 1.1
MPEG2 32,258,065 - -
Serpent 2,548,853 6,332,454 0.4
TDE-PP 12,605,042 2,357,564 5.3
Vocoder 406,394 - -

Figure 16: Single-node 24-core throughput comparison,
in outputs per second. Relative performance is StreamJIT
throughput divided by StreamIt throughput. StreamIt fails to
compile MPEG2 and Vocoder.

compiled with the autotuner’s requested configuration, the
initialization schedule is run, and the steady-state sched-
ule is run for at least 10 seconds (rounded up to a whole
schedule) to ensure the JVM JIT compiles the steady-state
code. Then for at least 5 seconds rounded up to a whole
schedule, the number of output items is counted and this
count is divided by the actual elapsed time (measured with
System.nanoTime()) to compute the throughput. The
throughput of the best-performing configurations from each
tuning run is averaged for comparison purposes.

Across all ten benchmarks, StreamJIT’s average through-
put is 2.8 times higher than StreamIt, despite being imple-
mented with considerably less effort. The results are shown
in Figure 16. StreamJIT’s autotuner chooses better paral-
lelizations than StreamIt’s heuristics, but GCC vectorizes
much more than HotSpot (the OpenJDK JIT compiler). On
our benchmarks, parallelization generally outweighs vector-
ization, but on ChannelVocoder and Filterbank StreamJIT
cannot overcome the vectorization disadvantage.

11.3 Online Autotuning and Distribution
The StreamIt benchmarks have a high communication-
to-computation ratio, for which our task-parallel distribu-
tion strategy performs poorly. Our naive communication
code compounds this flaw by making multiple unnecessary
copies. In the current implementation, online autotuning is
implemented using the distributed runtime with one node,
incurring the cost of loopback sockets and the extra copies.
In this section we use modified versions of the benchmarks,
so the numbers presented are not directly comparable to
single-node offline performance.

Online single-node throughput Single-node online tuning
was evaluated on the same machines used above for single-
node offline tuning (with 24 cores). Figure 17 shows online
tuning performance on the modified ChannelVocoder bench-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500

T
im

e
 (

m
s
)

Tuning Trials

Current trial
Best

Figure 17: Online autotuning progress on the (modified)
ChannelVocoder benchmark, showing the time in millisec-
onds to produce 30000 outputs (inverse throughput, lower is
better).

mark and Figure 18 shows the same metric for the modi-
fied FMRadio benchmark. The graph shows the time taken
to output 30000 data items after reaching the steady-state
in each configuration (inverse throughput, thus lower num-
bers are better), as well as the time of the best configura-
tion found so far. Both graphs show the variance increasing
when the autotuner has not discovered a new best configu-
ration, then decreasing again when it does. The autotuner is
making a tradeoff between exploring the search space and
exploiting the parts of the space it already knows give high
performance. If this oscillation is unacceptable for a partic-
ular program, the current best configuration could be run in
parallel with the search to provide a fallback, as in Siblin-
gRivalry [5].

Offline distributed throughput Distributed offline tuning
was evaluated on the same machines used for single-node
offline tuning, but using only 16 cores per node for the
StreamJIT compiler to leave cores free for the distributed
runtime’s communication thread. Figure 19 shows speedup
on the modified FMRadio and ChannelVocoder benchmarks
across 4, 8 and 16 nodes relative to 2-node performance after
a 24-hour tuning run. ChannelVocoder, the more compute-
intensive of the two benchmarks, scales well up to 16 nodes.
FMRadio has less computation and only scales well up to 4
nodes.

Figure 20 compares tuning progress for the modified FM-
Radio benchmark using 2, 4, 8, and 16 nodes over the 24-
hour tuning run (Figure 19 is based on the best configuration
found during these runs). Each trial tests the time to produce
30000 stream graph outputs. The number of trials performed
in each tuning run varies based on autotuner randomness.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 500 1000 1500 2000 2500

T
im

e
(m

s
)

Tuning Rounds

fm21,4096,1

Current trial
Best

Figure 18: Online autotuning progress on the (modified)
FMRadio benchmark, showing the time in milliseconds to
produce 30000 outputs (inverse throughput, lower is better).

benchmark 2 nodes 4 8 16
ChannelVocoder 1.00 1.38 3.58 10.13
FMRadio 1.00 3.18 3.75 4.60

Figure 19: Speedup after distributed offline autotuning on 4,
8 and 16 nodes, relative to 2 nodes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200

T
im

e
 (

m
s
)

Tuning Trials

2 nodes
4 nodes
8 nodes

16 nodes

Figure 20: Distributed offline autotuning progress on the
(modified) FMRadio benchmark, showing the time in mil-
liseconds to produce 30000 outputs (inverse throughput,
lower is better) of the best configuration up to that point.
The benchmark was tuned for each node count for 24 hours.

12. Conclusion
Modern applications are built on the abstractions provided
by domain libraries. While domain-specific languages can
offer better performance through domain-specific optimiza-
tions, the cost of implementing an optimizing compiler has
caused few domain-specific languages to be built. Commen-
sal compilers substantially reduce compiler implementation
effort by leveraging existing infrastructure. By reusing their
host language’s front-end, delegating middle-end decisions
to an autotuner, and using existing APIs to enable optimized
code generation by the virtual machine back-end, commen-
sal compilers need only implement domain-specific opti-
mizations. We demonstrated the power of our approach by
implementing a commensal compiler for StreamJIT, a Java-
embedded stream programming language, that gives perfor-
mance 2.8 times better than StreamIt’s native code compiler
with a fraction of the engineering effort. We additionally im-
plemented automatic distribution over multiple nodes at the
low cost of writing the socket communication code.

Acknowledgements
Mike Gordon helped us get started with StreamIt and ex-
plained the lessons learned during its development. Jason
Ansel provided valuable insight into designing effective
search spaces for OpenTuner.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science under the X-Stack
award DE-SC0008923, a grant from the Intel Science and
Technology Center for Big Data, and a SMART3 graduate
fellowship.

References
[1] Expression Trees, . URL http://msdn.microsoft.com/

en-us/library/bb397951%28v=vs.110%29.aspx.

[2] Emitting Dynamic Methods and Assemblies, . URL
http://msdn.microsoft.com/en-us/library/

8ffc3x75%28v=vs.110%29.aspx.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A Language
and Compiler for Algorithmic Choice. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 38–49, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi:
10.1145/1542476.1542481.

[5] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-
M. O’Reilly, and S. Amarasinghe. SiblingRivalry: Online Au-
totuning Through Local Competitions. In Proceedings of the
2012 International Conference on Compilers, Architectures

3 http://smart.mit.edu/

and Synthesis for Embedded Systems, CASES ’12, pages 91–
100, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1424-4. doi: 10.1145/2380403.2380425.

[6] J. Ansel, S. Kamil, K. Veeramachaneni, U.-M. O’Reilly, and
S. Amarasinghe. OpenTuner: An Extensible Framework for
Program Autotuning. 2013. URL http://hdl.handle.

net/1721.1/81958.

[7] ASM. ASM bytecode transformation library. http://asm.

ow2.org/.

[8] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime:
A Java-compatible and Synthesizable Language for Heteroge-
neous Architectures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’10, pages 89–108, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0203-6. doi:
10.1145/1869459.1869469.

[9] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink,
R. Rabbah, and S. Shukla. A Compiler and Runtime for
Heterogeneous Computing. In Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, pages 271–276,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1199-1.
doi: 10.1145/2228360.2228411.

[10] E. Axelsson, K. Claessen, G. Devai, Z. Horvath, K. Keijzer,
B. Lyckegrd, A. Persson, M. Sheeran, J. Svenningsson, and
A. Vajda. Feldspar: A domain specific language for digital
signal processing algorithms. In Formal Methods and Mod-
els for Codesign (MEMOCODE), 2010 8th IEEE/ACM In-
ternational Conference on, pages 169–178, July 2010. doi:
10.1109/MEMCOD.2010.5558637.

[11] S. Bharadwaj. invokedynamic and Jython. In JVM Language
Summit 2011, JVMLS 2011, 2011.

[12] K. Brown, A. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Oder-
sky, and K. Olukotun. A Heterogeneous Parallel Framework
for Domain-Specific Languages. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International Confer-
ence on, pages 89–100, Oct 2011. doi: 10.1109/PACT.2011.
15.

[13] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. Schiller.
Building and using pluggable type-checkers. In ICSE’11,
Proceedings of the 33rd International Conference on Soft-
ware Engineering, pages 681–690, Waikiki, Hawaii, USA,
May 25–27, 2011.

[14] M. Frigo and S. Johnson. FFTW: an adaptive software archi-
tecture for the FFT. In Acoustics, Speech and Signal Process-
ing, 1998. Proceedings of the 1998 IEEE International Con-
ference on, volume 3, pages 1381–1384 vol.3, May 1998. doi:
10.1109/ICASSP.1998.681704.

[15] M. Garcia. Runtime metaprogramming via
java.lang.invoke.MethodHandle. May 2012.
URL http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2012Q2/RuntimeMP.

pdf.

[16] M. Gordon. Compiler Techniques for Scalable Performance
of Stream Programs on Multicore Architectures. PhD thesis,
Massachusetts Institute of Technology, 2010.

[17] D. Heidinga. MethodHandle Implementation Tips and Tricks.
In JVM Language Summit 2011, JVMLS 2011, 2011.

[18] ImageMagick. ImageMagick. URL http://www.

imagemagick.org/.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building
Blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-636-3. doi: 10.1145/1272996.1273005.

[20] M. Karczmarek. Constrained and Phased Scheduling of Syn-
chronous Data Flow Graphs for StreamIt Language. PhD the-
sis, Massachusetts Institute of Technology, 2002.

[21] A. Kulkarni and R. R. Newton. Embrace, Defend, Extend: A
Methodology for Embedding Preexisting DSLs. In Proceed-
ings of the 1st Annual Workshop on Functional Programming
Concepts in Domain-specific Languages, FPCDSL ’13, pages
27–34, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2380-2. doi: 10.1145/2505351.2505355.

[22] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconcil-
ing Object, Relations and XML in the .NET Framework. In
Proceedings of the 2006 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’06, pages 706–706,
New York, NY, USA, 2006. ACM. ISBN 1-59593-434-0. doi:
10.1145/1142473.1142552.

[23] C. Nutter. Adding invokedynamic Support to JRuby. In JVM
Language Summit 2011, JVMLS 2011, 2011.

[24] F. Otto, V. Pankratius, and W. Tichy. High-level Multi-
core Programming with XJava. In Software Engineering -
Companion Volume, 2009. ICSE-Companion 2009. 31st In-
ternational Conference on, pages 319–322, May 2009. doi:
10.1109/ICSE-COMPANION.2009.5071011.

[25] F. Otto, V. Pankratius, and W. Tichy. XJava: Exploit-
ing Parallelism with Object-Oriented Stream Programming.
In H. Sips, D. Epema, and H.-X. Lin, editors, Euro-Par
2009 Parallel Processing, volume 5704 of Lecture Notes
in Computer Science, pages 875–886. Springer Berlin Hei-
delberg, 2009. ISBN 978-3-642-03868-6. doi: 10.1007/
978-3-642-03869-3\ 81.

[26] F. Otto, C. Schaefer, M. Dempe, and W. Tichy. A Language-
Based Tuning Mechanism for Task and Pipeline Parallelism.
In P. DAmbra, M. Guarracino, and D. Talia, editors, Euro-Par
2010 - Parallel Processing, volume 6272 of Lecture Notes
in Computer Science, pages 328–340. Springer Berlin Hei-
delberg, 2010. ISBN 978-3-642-15290-0. doi: 10.1007/
978-3-642-15291-7\ 30.

[27] J. Ponge and F. L. Mouël. JooFlux: Hijacking Java 7 In-
vokeDynamic To Support Live Code Modifications. CoRR,
abs/1210.1039, 2012.

[28] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, Seattle,
WA, June 2013.

[29] B. R. Rau and C. D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for high per-
formance scientific computing. In Proceedings of the 14th
Annual Workshop on Microprogramming, MICRO 14, pages
183–198, Piscataway, NJ, USA, 1981. IEEE Press.

[30] T. Rompf and M. Odersky. Lightweight Modular Staging: A
Pragmatic Approach to Runtime Code Generation and Com-
piled DSLs. In Proceedings of the Ninth International Confer-
ence on Generative Programming and Component Engineer-
ing, GPCE ’10, pages 127–136, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0154-1. doi: 10.1145/1868294.
1868314.

[31] J. Rose. Bytecodes meet combinators: invokedynamic on
the JVM. In Proceedings of the Third Workshop on Virtual
Machines and Intermediate Languages, page 2. ACM, 2009.

[32] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Stream-
Flex: High-throughput Stream Programming in Java. In Pro-
ceedings of the 22Nd Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications,
OOPSLA ’07, pages 211–228, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-786-5. doi: 10.1145/1297027.
1297043.

[33] A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf,
M. Odersky, and K. Olukotun. Forge: Generating a High
Performance DSL Implementation from a Declarative Spec-
ification. In Proceedings of the 12th International Conference
on Generative Programming: Concepts & Experiences,
GPCE ’13, pages 145–154, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2373-4. doi: 10.1145/2517208.2517220.

[34] C. Thalinger and J. Rose. Optimizing Invokedynamic. In Pro-
ceedings of the 8th International Conference on the Principles
and Practice of Programming in Java, PPPJ ’10, pages 1–9,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0269-2.
doi: 10.1145/1852761.1852763.

[35] The Java Tutorials. Aggregate Operations, . URL
http://docs.oracle.com/javase/tutorial/

collections/streams/index.html.

[36] The Java Tutorials. Type Annotations and Pluggable Type
Systems, . URL http://docs.oracle.com/javase/

tutorial/java/annotations/type_annotations.

html.

[37] W. Thies. Language and Compiler Support for Stream Pro-
grams. PhD thesis, Massachusetts Institute of Technology,
2009.

[38] W. Thies and S. Amarasinghe. An Empirical Character-
ization of Stream Programs and Its Implications for Lan-
guage and Compiler Design. In Proceedings of the 19th In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’10, pages 365–376, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0178-7. doi:
10.1145/1854273.1854319.

[39] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth.
A Scalable Auto-tuning Framework for Compiler Optimiza-
tion. In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–12, May 2009.
doi: 10.1109/IPDPS.2009.5161054.

[40] TypeToken. TypeToken. URL https://

code.google.com/p/guava-libraries/wiki/

ReflectionExplained#TypeToken.

[41] Z. Wang and M. F. P. O’boyle. Using Machine Learning
to Partition Streaming Programs. ACM Trans. Archit. Code
Optim., 10(3):20:1–20:25, Sept. 2008. ISSN 1544-3566. doi:
10.1145/2512436.

[42] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear
Algebra Software. In Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing, Supercomputing ’98, pages
1–27, Washington, DC, USA, 1998. IEEE Computer Society.
ISBN 0-89791-984-X.

[43] C. Wimmer and T. Würthinger. Truffle: A Self-optimizing
Runtime System. In Proceedings of the 3rd Annual Con-
ference on Systems, Programming, and Applications: Soft-
ware for Humanity, SPLASH ’12, pages 13–14, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1563-0. doi:
10.1145/2384716.2384723.

[44] T. Würthinger. Extending the Graal Compiler to Optimize
Libraries. In Proceedings of the ACM International Confer-
ence Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’11, pages
41–42, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0942-4. doi: 10.1145/2048147.2048168.

[45] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A
Language and Compiler for DSP Algorithms. In Proceedings
of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01, pages 298–
308, New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2.
doi: 10.1145/378795.378860.

[46] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A System for General-
purpose Distributed Data-parallel Computing Using a High-
level Language. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’08, pages 1–14, Berkeley, CA, USA, 2008. USENIX
Association.

[47] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association.

