97 research outputs found

    Practical solutions for sampling alternatives in large-scale models

    Get PDF
    Many large-scale real-world transport applications have choice sets that are so large as to make model estimation and application computationally impractical. The ability to estimate models on subsets of the alternatives is thus of great appeal, and correction approaches have existed since the late 1970s for the simple multinomial logit (MNL) model. However, many of these models in practice rely on nested logit specifications, for example, in the context of the joint choice of mode and destination. Recent research has put forward solutions for such generalized extreme value (GEV) structures, but these structures remain difficult to apply in practice. This paper puts forward a simplification of the GEV method for use in computationally efficient implementations of nested logit. The good performance of this approach is illustrated with simulated data, and additional insights into sampling error are also provided with different sampling strategies for MNL

    Methodological perspectives on the application of compound-specific stable isotope fingerprinting for sediment source apportionment

    Get PDF
    Compound-specific stable isotope (CSSI) fingerprinting of sediment sources is a recently introduced tool to overcome some limitations of conventional approaches for sediment source apportionment. The technique uses the C-13 CSSI signature of plant-derived fatty acids (delta C-13-fatty acids) associated with soil minerals as a tracer. This paper provides methodological perspectives to advance the use of CSSI fingerprinting in combination with stable isotope mixing models (SIMMs) to apportion the relative contributions of different sediment sources (i.e. land uses) to sediments. CSSI fingerprinting allows quantitative estimation of the relative contribution of sediment sources within a catchment at a spatio-temporal resolution, taking into account the following approaches. First, application of CSSI fingerprinting techniques to complex catchments presents particular challenges and calls for well-designed sampling strategies and data handling. Hereby, it is essential to balance the effort required for representative sample collection and analyses against the need to accurately quantify the variability within the system. Second, robustness of the CSSI approach depends on the specificity and conservativeness of the delta C-13-FA fingerprint. Therefore, saturated long-chain (> 20 carbon atoms) FAs, which are biosynthesised exclusively by higher plants and are more stable than the more commonly used short-chain FAs, should be used. Third, given that FA concentrations can vary largely between sources, concentration-dependent SIMMs that are also able to incorporate delta C-13-FA variability should be standard operation procedures to correctly assess the contribution of sediment sources via SIMMs. This paper reflects on the use of delta C-13-FAs in erosion studies and provides recommendations for its application. We strongly advise the use of saturated long-chain (> 20 carbon atoms) FAs as tracers and concentration-dependent Bayesian SIMMs. We anticipate progress in CSSI sediment fingerprinting from two current developments: (i) development of hierarchical Bayesian SIMMs to better address catchment complexity and (ii) incorporation of dual isotope approaches (delta C-13- and delta H-2-FA) to improve estimates of sediment sources

    Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    Get PDF
    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges

    A review of source tracking techniques for fine sediment within a catchment

    Get PDF
    Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments

    A review of source tracking techniques for fine sediment within a catchment

    Get PDF
    Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments

    Hemi-Castaing ligamentoplasty for the treatment of chronic lateral ankle instability: a retrospective assessment of outcome

    Get PDF
    Purpose: In the treatment of chronic ankle instability, most non-anatomical reconstructions use the peroneus brevis tendon. This, however, sacrifices the natural ankle stabilising properties of the peroneus brevis muscle. The aim of this study was to evaluate the functional outcome of patients treated with a hemi-Castaing procedure, which uses only half the peroneus brevis tendon. Methods: We performed a retrospective cohort study of patients who underwent hemi-Castaing ligamentoplasty for chronic lateral ankle instability between 1993 and 2010, with a minimum of one year follow-up. Patients were sent a postal questionnaire comprising five validated outcome measures: Olerud-Molander Ankle Score (OMAS), Karlsson Ankle Functional Score (KAFS), Tegner Activity Level Score (pre-injury, prior to surgery, at follow-up), visual analog scale on pain (VAS) and the Short Form 36 (SF-36). Results: Twenty patients completed the questionnaire on functional outcome. The OMAS showed good to excellent outcome in 80% and the KAFS in 65%, the Tegner Score improved from surgery but did not reach pre-injury levels, the VAS on pain was 1 of 10 and the SF-36 returned to normal compared with the average population. Conclusions: Even though most patients were satisfied with the results, outcome at long-term follow-up was less favourable compared with the literature on anatomical reconstructions. In accordance with the literature, we therefore conclude that the initial surgical treatment of chronic lateral ankle instability should be an anatomical repair with augmentation (i.e. the Broström-Gould technique) and the non-anatomical repair should be reserved for unsuccessful cases after anatomical repair or in cases where no adequate ligament remnants are available for reconstruction

    Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes

    Get PDF
    Abstract: Purpose: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods: Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach

    Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: An overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    Get PDF
    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137Cs (half-life of 30.2 years), 210Pb ex (half-life of 22.3 years) and 7Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably - a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. © 2012 Elsevier Ltd

    A 300-year record of sedimentation in a small tilled catena in Hungary based on δ13C, δ15N, and C/N distribution

    Get PDF
    Purpose Soil erosion is one of the most serious hazards that endanger sustainable food production. Moreover, it has marked effects on soil organic carbon (SOC) with direct links to global warming. At the same time, soil organic matter (SOM) changes in composition and space could influence these processes. The aim of this study was to predict soil erosion and sedimentation volume and dynamics on a typical hilly cropland area of Hungary due to forest clearance in the early eighteenth century. Materials and methods Horizontal soil samples were taken along two parallel intensively cultivated complex convex-concave slopes from the eroded upper parts at mid-slope positions and from sedimentation in toe-slopes. Samples were measured for SOC, total nitrogen (TN) content, and SOMcompounds (δ13C, δ15N, and photometric indexes). They were compared to the horizons of an in situ non-eroded profile under continuous forest. On the depositional profile cores, soil depth prior to sedimentation was calculated by the determination of sediment thickness. Results and discussion Peaks of SOC in the sedimentation profiles indicated thicker initial profiles, while peaks in C/N ratio and δ13C distribution showed the original surface to be ~ 20 cm lower. Peaks of SOC were presumed to be the results of deposition of SOC-enriched soil from the upper slope transported by selective erosion of finer particles (silts and clays). Therefore, changes in δ13C values due to tillage and delivery would fingerprint the original surface much better under the sedimentation scenario than SOC content. Distribution of δ13C also suggests that the main sedimentation phase occurred immediately after forest clearance and before the start of intense cultivation with maize. Conclusions This highlights the role of relief in sheet erosion intensity compared to intensive cultivation. Patterns of δ13C indicate the original soil surface, even in profiles deposited as sediment centuries ago. The δ13C and C/N decrease in buried in situ profiles had the same tendency as recent forest soil, indicating constant SOM quality distribution after burial. Accordingly, microbiological activity, root uptake, and metabolism have not been effective enough to modify initial soil properties
    • …
    corecore