767 research outputs found

    Gauged Discrete Symmetries and Proton Stability

    Full text link
    We discuss the results of a search for anomaly free Abelian Z_N discrete symmetries that lead to automatic R-parity conservation and prevents dangerous higher-dimensional proton decay operators in simple extensions of the minimal supersymmetric extension of the standard model (MSSM) based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to MSSM and potentially realistic fermion masses. We find viable models in each of the extensions and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations.Comment: 8 pages, 2 figures; v2 : typos fixed, references adde

    R-Parity Violation and Non-Abelian Discrete Family Symmetry

    Full text link
    We investigate the implications of R-parity violating operators in a model with family symmetry. The family symmetry can determine the form of R-parity violating operators as well as the Yukawa matrices responsible for fermion masses and mixings. In this paper we consider a concrete model with non-abelian discrete symmetry Q_6 which contains only three R-parity violating operators. We find that ratios of decay rates of the lepton flavor violating processes are fixed thanks to the family symmetry, predicting BR(tau to 3e)/BR(tau to 3mu) ~ 4 m_{mu}^2/m_{tau}^2.Comment: 20 pages, 3 figure

    Bilinear R-parity violation with flavor symmetry

    Get PDF
    Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry A4A_4 with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles θ13\theta_{13} and θ23\theta_{23} in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.Comment: 16 pages, 3 figures. Extended version, as published in JHE

    Direct and Indirect Detection of Dark Matter in D6 Flavor Symmetric Model

    Full text link
    We study a fermionic dark matter in a non-supersymmetric extension of the standard model with a family symmetry based on D6xZ2xZ2. In our model, the final state of the dark matter annihilation is determined to be e+ e- by the flavor symmetry, which is consistent with the PAMELA result. At first, we show that our dark matter mass should be within the range of 230 GeV - 750 GeV in the WMAP analysis combined with mu to e gamma constraint. Moreover we simultaneously explain the experiments of direct and indirect detection, by simply adding a gauge and D6 singlet real scalar field. In the direct detection experiments, we show that the lighter dark matter mass ~ 230 GeV and the lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds reported by CDMS II and XENON100. In the indirect detection experiments, we explain the positron excess reported by PAMELA through the Breit-Wigner enhancement mechanism. We also show that our model is consistent with no antiproton excess suggested by PAMELA.Comment: 20 pages, 9 figures, 2 tables, accepted version for publication in European Physical Journal

    Electron and Muon g2g-2 Contributions from the TT' Higgs Sector

    Get PDF
    We study the experimental constraints from electron and muon g2g-2 factors on the Higgs masses and Yukawa couplings in the TT' model, and thereby show that the discrepancy between the standard model prediction and experimental value of muon anomalous g2g-2 factor can be easily accommodated.Comment: 7 pages, slightly modified and new references adde

    Accidental stability of dark matter

    Get PDF
    We propose that dark matter is stable as a consequence of an accidental Z2 that results from a flavour-symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic Higgs portal dark matter scheme.Comment: 12 pages, final version, published in JHE

    Strain Relaxation Mechanisms and Local Structural Changes in Si_{1-x}$Ge_{x} Alloys

    Full text link
    In this work, we address issues pertinent to the understanding of the structural and electronic properties of Si_{1-x} Ge_{x}alloys, namely, (i) how does the lattice constant mismatch between bulk Si and bulk Ge manifests itself in the alloy system? and (ii) what are the relevant strain release mechanisms? To provide answers to these questions, we have carried out an in-depth study of the changes in the local geometric and electronic structures arising from the strain relaxation in Si_{1-x} Ge_{x} alloys using an ab initio molecular dynamics scheme. The optimized lattice constant, while exhibiting a general trend of linear dependence on the composition (Vegard's law), shows a negative deviation from Vegard's law in the vicinity of x=0.5. We delineate the mechanisms responsible for each one of the above features. We show that the radial-strain relaxation through bond stretching is responsible for the overall trend of linear dependence of the lattice constant on the composition. On the other hand, the negative deviation from Vegard's law is shown to arise from the angular-strain relaxation.Comment: 21 pages, 7 figure

    Parametrizing the Lepton Mixing Matrix in terms of Charged Lepton Corrections

    Get PDF
    We consider a parametrization of the lepton mixing matrix in which the deviations from maximal atmospheric mixing and vanishing reactor mixing are obtained in terms of small corrections from the charged lepton sector. Relatively large deviations for the reactor mixing angle from zero as indicated by T2K experiment can be obtained in this parametrization. We are able to further reduce the number of complex phases, thus, simplifying the analysis. In addition, we have obtained the sides of unitarity triangles and the vacuum oscillation probabilities in this parametrization. The Jarlskog rephasing invariant measure of CP violation at the leading order has a single phase difference which can be identified as Dirac-type CP violating phase in this parametrization.Comment: New references added, Phys. Lett. B (to appear

    A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I

    Full text link
    A search for periodic modulations of the solar neutrino flux was performed using the Super-Kamiokande-I data taken from May 31st, 1996 to July 15th, 2001. The detector's capability of measuring the exact time of events, combined with a relatively high yield of solar neutrino events, allows a search for short-time variations in the observed flux. We employed the Lomb test to look for periodic modulations of the observed solar neutrino flux. The obtained periodogram is consistent with statistical fluctuation and no significant periodicity was found
    corecore