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We consider a parametrization of the lepton mixing matrix in which the deviations from maximal
atmospheric mixing and vanishing reactor mixing are obtained in terms of small corrections from the
charged lepton sector. Relatively large deviations for the reactor mixing angle from zero as indicated
by T2K experiment can be obtained in this parametrization. We are able to further reduce the number
of complex phases, thus, simplifying the analysis. In addition, we have obtained the sides of unitarity
triangles and the vacuum oscillation probabilities in this parametrization. The Jarlskog rephasing invariant
measure of CP violation at the leading order has a single phase difference which can be identified as
Dirac-type CP violating phase in this parametrization.

© 2011 Published by Elsevier B.V.

1. Introduction

Results from a variety of solar, atmospheric and terrestrial neutrino oscillation experiments [1] have constrained the form of the lepton
mixing matrix U [2]. The lepton mixing matrix is given by

U = U †
l Uν (1)

where Ul and Uν are both 3 × 3 unitary matrices such that Ul arises from the diagonalization of the charged lepton mass matrix (Ml)

while Uν diagonalizes the neutrino mass matrix (Mν). For three lepton generations, the 3 × 3 unitary matrix U in Particle Data Group
(PDG) [3] parametrization is given by

U =
⎛
⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎠ · ℘ (2)

where s13 = sin θ13, c13 = cos θ13 with θ13 being the reactor angle, s12 = sin θ12, c12 = cos θ12 with θ12 being the solar angle, s23 =
sin θ23, c23 = cos θ23 with θ23 being the atmospheric mixing angle and δ is the Dirac-type CP violating phase. The phase matrix ℘ =
diag(1, eiα1/2, eiα2/2) contains the Majorana-type CP violating phases α1 and α2 which do not affect neutrino oscillations and are not
directly accessible to experimental scrutiny at present. Current data is consistent with the tribimaximal (TBM) mixing [4]

UTBM =

⎛
⎜⎜⎝

2√
6

1√
3

0

−1√
6

1√
3

−1√
2

−1√
6

1√
3

1√
2

⎞
⎟⎟⎠ · ℘ (3)

which has been derived using family symmetries [5]. In addition to TBM, there are other mixing schemes which can reproduce the
observed leptonic mixing pattern which include the two Golden Ratio (GR) mixing schemes where the mixing angles are for GR1: θ12 =
tan−1(1/ϕ), θ23 = π/4, θ13 = 0 [6], GR2: θ12 = cos−1(ϕ/2), θ23 = π/4, θ13 = 0 [7] where ϕ = (1 + √

5)/2, Hexagonal Mixing (HM):
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θ12 = π/6, θ23 = π/4, θ13 = 0 [8], Bimaximal Mixing (BM): θ12 = π/4, θ23 = π/4, θ13 = 0 [9]. All these mixing schemes can arise from
mass-independent textures also known as form diagonalizable textures [10] and lead to a predictive neutrino mass matrix structure
which contains just five parameters (the three neutrino masses and two Majorana phases). All the above mixing scenarios have the same
predictions for the reactor and atmospheric mixing angles viz θ13 = 0 and θ23 = π/4, whereas their predictions for the solar mixing angle
θ12 are different. Thus, the above mixing matrices are common up-to a mixing matrix

U =

⎛
⎜⎜⎜⎝

c′
12 s′

12 0
−s′12√

2

c′
12√
2

−1√
2

−s′12√
2

c′
12√
2

1√
2

⎞
⎟⎟⎟⎠ · ℘ (4)

arising from a mu–tau symmetric neutrino mass matrix. It is highly unlikely that any of the above mixing schemes is exact since there are
already hints of a non-zero reactor mixing angle θ13 [11]. Recently, the T2K collaboration has observed possible indications of the νμ → νe

appearance and reported the following ranges for θ13 [12]

5.0◦ < θ13 < 16.0◦ for NH (5)

5.8◦ < θ13 < 17.8◦ for IH (6)

at 90% C.L. Moreover, the best fit value of θ13 is found to be θ13 ≈ 9.7◦ for NH and θ13 ≈ 11◦ of IH, thus, implying large deviations from
θ13 = 0◦ in the above mentioned mixing scenarios. Therefore, it becomes important to develop a parametrization of the lepton mixing
matrix in which such deviations are manifest. A natural possibility to obtain a phenomenologically viable neutrino mixing matrix and to
generate non-zero θ13 and non-maximal θ23 is to assume that these deviations come from the charged lepton sector. Such an assumption
has been made earlier to generate deviations from bimaximal mixing [13,14] and tribimaximal mixing [15–18].

2. Formalism

A general 3 × 3 matrix contains 3 moduli and 6 phases [19] and can be represented as

U = eiΦ P Ũ Q (7)

where P = diag(1, eiφ1 , eiφ2) and Q = diag(1, eiρ1 , eiρ2) are diagonal phase matrices having two phases each, Ũ is the matrix containing 3
angles and one phase and has the form of U (except for the phase matrix ℘) in Eq. (2). In general, when charged leptons also contribute
to the mixing, the lepton mixing matrix contains 6 real parameters and six phases [14]. As pointed out earlier the two Majorana phases
are unlikely to be measured in the present and the forthcoming experiments, so that we may dispense with the Majorana phases at least
for the present by considering the Hermitian products Ml M

†
l and Mν M†

ν . Here, two points are in order:

(1) Since we are considering mass-independent textures of the neutrino mass matrix, thus, Mν and Mν M†
ν are diagonalized by the same

diagonalizing matrix, so we can consider the product Mν M†
ν .

(2) The deviations of the charged lepton mass matrix from diagonal matrix are in any case considered to be arbitrary so the choice of
product Ml M

†
l can be made.

By using these Hermitian products we not only dispense with the unnecessary burden of Majorana phases but we are also able to
remove one additional phase from the lepton mixing matrix, thus, simplifying the subsequent analysis. The lepton mass matrices can be
diagonalized as

Ml = Ul M
d
l U †

R , (8)

Mν = Uν Md
νU T

ν . (9)

Thus, the product Ml M
†
l becomes

Ml M
†
l = Ul M

d
l U †

R U R Md
l U †

l = Ul
(
Md

l

)2
U †

l (10)

which can be written as

Ml M
†
l = eiφl Pl Ũl Q l

(
Md

l

)2
Q †

l Ũl
†

P †
l e−iφl = PlŨl

(
Md

l

)2
Ũl

†
P †

l (11)

using Eq. (7). Similarly, for the product Mν M†
ν we obtain

Mν M†
ν = P̃ν Ũν

(
Md

ν

)2
Ũ †

ν P̃ †
ν . (12)

We can absorb two phases from Pl and one phase from P̃ν in the left-handed lepton fields and the resulting lepton mixing matrix is
given by

U = Ũ † P̃ν Ũν (13)
l
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where Ũl and Ũν contain three real parameters and one phase each while P̃ν contains one phase P̃ν = diag(1,1, eiφ). Thus, in this
formalism U is expressed in terms of six real parameters and three phases.

In the present work, we discuss a parametrization of the lepton mixing matrix which allows for the large deviations from θ13 = 0 and
has the form of Eq. (4) at zeroth order. Here θ ′

12 can have the values sin−1(1/
√

3) for TBM mixing, tan−1(1/ϕ) for GR1 mixing, cos−1(ϕ/2)

for GR2 mixing where ϕ = (1 + √
5)/2, π/6 for hexagonal mixing and π/4 for bimaximal mixing. Deviations from the above mentioned

scenarios are parametrized in terms of charged lepton corrections represented by small parameters having magnitude of the order of
Wolfenstein parameter λ ≈ 0.227 or less. In the small angle approximation, we have to the first order in εi j

sinεi j ≈ εi j, cosεi j ≈ 1, εi j < 0.227 (14)

where i, j = 1,2,3 and i < j.

3. Deviations from exact mixing schemes

In this section, we obtain expressions for lepton mixing observables in terms of the charged lepton corrections. The neutrino mixing
matrix Ũν is assumed to have the form of Eq. (4) except for the phase matrix ℘ . The charged lepton mixing matrix to first order1 in
terms of small parameters is given by

Ũl =
⎛
⎝

1 ε12 e−iδ13ε13
−ε12 1 ε23

−eiδ13ε13 −ε23 1

⎞
⎠ (15)

and the resulting lepton mixing matrix has the form

U = Ũ †
l P̃ν Ũν =

⎛
⎜⎜⎜⎝

c′
12 s′

12 0
−s′12√

2

c′
12√
2

−1√
2

−eiφ s′12√
2

eiφc′
12√

2
eiφ√

2

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

s′12(ε12+e−i(δ13−φ)ε13)√
2

− c′
12(ε12+e−i(δ13−φ)ε13)√

2
ε12−e−i(δ13−φ)ε13√

2

c′
12ε12 + eiφ s′12ε23√

2
s′

12ε12 − eiφc′
12ε23√
2

−eiφε23√
2

−s′12ε23√
2

+ eiδ13 c′
12ε13

c′
12ε23√

2
+ eiδ13 s′

12ε13
−ε23√

2

⎞
⎟⎟⎟⎟⎠

. (16)

The lepton mixing angles are related to the elements of the mixing matrix as

sin2 θ13 = |Ue3|2, sin2 θ23 = |Uμ3|2
|Uμ3|2 + |Uτ3|2 , sin2 θ12 = |Ue2|2

|Ue1|2 + |Ue2|2 . (17)

The mixing angles in this parametrization, to first order in small parameters are given by

sin θ13 = ε13 − ε12 cos(δ13 − φ)√
2

,

sin θ23 = 1 + ε23 cosφ√
2

,

sin θ12 = s′
12 − c′

12(ε12 + ε13 cos(δ13 − φ))√
2

. (18)

It can be seen that the reactor mixing angle along with the atmospheric mixing angle is independent of θ ′
12 and the deviation of the

atmospheric mixing angle from maximality depends only on the small parameter ε23 in the first order corrections. We restrict the ranges
of perturbation parameters by using the recent global analysis [20] which incorporates the T2K [12] and MINOS [21] results. Allowed
numerical ranges for the perturbation parameters ε13 and ε23 at 3σ for all mixing scenarios are −0.22 < (ε13, ε23) < 0.22. The range of
ε12 at 3σ is

−0.20 < ε12 < 0.17 TBM,

−0.165 < ε12 < 0.22 GR1,

−0.22 < ε12 < 0.17 GR2,

−0.15 < ε12 < 0.22 HM,

−0.22 < ε12 < 0 BM. (19)

The Jarlskog CP violation rephasing invariant [22] is given by

JCP = sin 2θ ′
12ε13 sin(δ13 − φ)

4
√

2
. (20)

An important point to note here is that the Jarlskog rephasing invariant JCP to the first order contains a single phase difference which is
the relevant Dirac-type CP violating phase in this case. However, it does not necessarily coincide with the Dirac-type phase in the standard

1 Second order corrections to the mixing matrix elements and other relevant quantities have been discussed in Appendix A.
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parametrization as pointed out in Ref. [17]. Also, in Refs. [16,17], the expression for JCP contains two different phases in the leading order
term and further assuming CKM like hierarchy among the perturbation parameters, the relevant Dirac phase in these works comes out to
be different from that in our parametrization.

Now we discuss unitarity triangles and neutrino oscillation formulae which get simplified using this parametrization. The unitarity
triangles may be constructed using the orthogonality of different pairs of columns or rows of the mixing matrix. Information about the
elements Ue2, Ue3 and Uμ3 is obtained in the solar, reactor and atmospheric experiments and the most important unitarity triangles
should include all these elements [23]. Two such unitarity triangles correspond to the orthogonality of second and third column ν2.ν3 and
orthogonality of the first and second row νe.νμ . The unitarity relation for the ν2.ν3 triangle is given by

Ue2U∗
e3 + Uμ2U∗

μ3 + Uτ2U∗
τ3 = 0 (21)

and the sides of this unitarity triangle to first order are given by

Ue2U∗
e3 ≈ ε12 − ei(δ13−φ)s′

12ε12√
2

,

Uμ2U∗
μ3 ≈ −c′

12

2
− s′

12ε12√
2

+ ic′
12ε23 sinφ,

Uτ2U∗
τ3 ≈ c′

12

2
+ ei(δ13−φ)s′

12ε13√
2

− ic′
12ε23 sinφ, (22)

which satisfies Eq. (21) to first order. The invariant JCP is

JCP = Im
(
Ue2U∗

e3U∗
μ2Uμ3

) = Im
(
Uτ2U∗

τ3U∗
e2Ue3

) = Im
(
Uμ2U∗

μ3U∗
τ2Uτ3

)
. (23)

The other unitarity triangle νe · νμ corresponds to the unitarity relation

Uμ1U∗
e1 + Uμ2U∗

e2 + Uμ3U∗
e3 = 0 (24)

and to first order the sides of this unitarity triangle are given by

Uμ1U∗
e1 ≈ sin 2θ ′

12(−1 + eiφε23)

2
√

2
+ ε12(1 + 3 cos 2θ ′

12)

4
− ei(δ13−φ)s′2

12ε13

2
,

Uμ2U∗
e2 ≈ − sin 2θ ′

12(−1 + eiφε23)

2
√

2
+ ε12(1 − 3 cos 2θ ′

12)

4
− ei(δ13−φ)c′2

12ε13

2
,

Uμ3U∗
e3 ≈ −ε12

2
+ ei(δ13−φ)ε13

2
(25)

which satisfy Eq. (24) to first order. The invariant JCP is

JCP = Im
(
Uμ3U∗

e3U∗
μ2Ue2

) = Im
(
Uμ1U∗

e1U∗
μ3Ue3

) = Im
(
Uμ2U∗

e2U∗
μ1Ue1

)
. (26)

Now, we discuss the applications of this parametrization to neutrino oscillations. The probability of oscillation from flavor να to flavor νβ ,
P (να → νβ) is given by

P (να → νβ) =
∣∣∣∣∣

3∑
i=1

U∗
αie

−im2
i

L
2E Uβ i

∣∣∣∣∣
2

= δαβ − 4
∑
i> j

Re
(
U∗

αi Uβ i Uα j U
∗
β j

)
sin2 Δi j + 2

∑
i> j

Im
(
U∗

αi Uβ i Uα j U
∗
β j

)
sin 2Δi j (27)

where α, β = e, μ, τ , Δi j ≡ (m2
i − m2

j )L/4E , L is the oscillation length and E is the beam energy of neutrinos. Expanding to second order
in εi j and Δ21 assuming Δ21 	 1 [23], we obtain the various vacuum oscillation probabilities.

For e → e,μ, τ we obtain

P (νe → νe) = 1 − Δ2
21 sin2 2θ ′

12 − 2
(
ε2

12 + s′2
12ε

2
13

)
sin2 Δ31 + 4ε12ε13 cos(δ13 − φ) sin2 Δ31,

P (νe → νμ) = Δ2
21 sin2 2θ ′

12

2
+ (

ε2
12 + ε2

13

)
sin2 Δ31 − 2ε12ε13 cos(δ13 − φ) sin2 Δ31 + Δ21 sin 2θ ′

12ε12 sin(δ13 − φ)√
2

,

P (νe → ντ ) = Δ2
21 sin2 2θ ′

12

2
+ (

ε2
12 + ε2

13

)
sin2 Δ31 − 2ε12ε13 cos(δ13 − φ) sin2 Δ31 − Δ21 sin 2θ ′

12ε13 sin(δ13 − φ)√
2

. (28)

The above equations give electron neutrino survival and disappearance probabilities to the second order in εi j and Δ21. Note that these
probabilities are independent of deviations from atmospheric mixing so that any deviation from maximal atmospheric mixing only appears
at third order in these oscillation probabilities.
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For μ → e,μ, τ we obtain

P (νμ → νe) = Δ2
21 sin2 2θ ′

12

2
+ (

ε2
12 + ε2

13

)
sin2 Δ31 − 2ε12ε13 cos(δ13 − φ) sin2 Δ31 − Δ21 sin 2θ ′

12ε13 sin(δ13 − φ)√
2

,

P (νμ → νμ) = 1 − sin2 Δ31 − Δ2
21 sin2 2θ ′

12

4
+ 4ε2

23 cos2 φ sin2 Δ2
31,

P (νμ → ντ ) = sin2 Δ31 − Δ2
21 sin2 2θ ′

12

4
− 4ε2

23 cos2 φ sin2 Δ2
31 − (

ε2
12 + ε2

13

)
sin2 Δ31 + 2ε12ε13 cos(δ13 − φ) sin2 Δ31

+ Δ21 sin 2θ ′
12ε13 sin(δ13 − φ)√

2
. (29)

New results have been announced by long baseline experiment T2K probing the νμ → νe appearance channel giving non-zero reactor
mixing angle [12]. The deviation from maximal atmospheric mixing does not appear up-to second order in the oscillation probability
P (νμ → νe). Therefore, in this parametrization θ13 can have a large deviation from zero irrespective of the deviation of θ23 from π

4 to a
good approximation.

For τ → e,μ, τ we have

P (ντ → νe) = Δ2
21 sin2 2θ ′

12

2
+ (

ε2
12 + ε2

13

)
sin2 Δ31 − 2ε12ε13 cos(δ13 − φ) sin2 Δ31 + Δ21 sin 2θ ′

12ε12 sin(δ13 − φ)√
2

,

P (ντ → νμ) = sin2 Δ31 − Δ2
21 sin2 2θ ′

12

4
− 4ε2

23 cos2 φ sin2 Δ2
31 − (

ε2
12 + ε2

13

)
sin2 Δ31 + 2ε12ε13 cos(δ13 − φ) sin2 Δ31

− Δ21 sin 2θ ′
12ε13 sin(δ13 − φ)√

2
,

P (ντ → ντ ) = 1 − sin2 Δ31 − Δ2
21 sin2 2θ ′

12

4
+ 4ε2

23 cos2 φ sin2 Δ2
31. (30)

According to the above equations, some oscillation probabilities are identical up-to the second order. This is the consequence of the
simplifying assumptions Δ32 ≈ Δ31. These oscillation probabilities will differ slightly when third order perturbations are considered.

4. Summary

Neutrino oscillation experiments suggest an atmospheric mixing angle very close to π/4 and a small reactor mixing angle. We assume
the lepton mixing matrix at zeroth order having θ23 = π

4 and θ13 = 0. Deviations from maximal atmospheric mixing and vanishing
reactor mixing are obtained through charged lepton corrections in terms of small perturbation parameters. Relatively large deviations
for the reactor mixing angle from zero as indicated by T2K experiment can be obtained in this parametrization. In the zeroth order
lepton mixing matrix, we keep the solar mixing angle general, so that the deviations from a particular mixing scheme, e.g. TBM, GR1,
GR2, HM and BM can be obtained by substituting the value of solar mixing angle. In this analysis, we have been able to reduce the
number of complex phases to two by considering the Hermitian products of charged lepton and neutrino mass matrices, thus, resulting
in considerable simplification of our analysis. The Jarlskog rephasing invariant measure of CP violation contains a single phase difference
in the leading order which allows us to identify this phase difference with the Dirac-type CP violating phase in this parametrization. We
have also obtained the formulae for the sides of unitarity triangles and vacuum oscillation probabilities. It is found that the deviation from
maximal atmospheric mixing does not appear up-to second order in the oscillation probability P (νμ → νe) relevant for the measurement
of reactor mixing angle. Therefore, in this parametrization θ13 can have a large deviation from zero irrespective of the deviation of θ23
from maximality to a good approximation.
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Appendix A

Here, we list the second order corrections to the results given in the main text. The second order corrections to the first order mixing
matrix elements are given by

�Ue1 ≈ −c′
12(ε

2
12 + ε2

13)

2
+ s′

12ε23(e−iδ13ε13 − eiφε12)√
2

,

�Ue2 ≈ − s′
12(ε

2
12 + ε2

13)

2
+ c′

12ε23(eiφε12 − e−iδ13ε13)√
2

,

�Ue3 ≈ eiφε12ε23 + e−iδ13ε13ε23√ ,

2
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�Uμ1 ≈ s′
12(ε

2
12 + ε2

23)

2
√

2
+ e−i(δ13−φ)s′

12ε12ε13√
2

,

�Uμ2 ≈ c′
12(ε

2
12 + ε2

23)

2
√

2
− e−i(δ13−φ)c′

12ε12ε13√
2

,

�Uμ3 ≈ (ε2
12 + ε2

23)

2
√

2
− e−i(δ13−φ)ε12ε13√

2
,

�Uτ1 ≈ eiφs′
12(ε

2
13 + ε2

23)

2
√

2
,

�Uτ2 ≈ −eiφc′
12(ε

2
13 + ε2

23)

2
√

2
,

�Uτ3 ≈ −eiφ(ε2
13 + ε2

23)

2
√

2
. (31)

The second order corrections to the mixing angles are given by

� sin θ13 ≈ ε23 cosφ(ε13 + ε12 cos(δ13 − φ))√
2

+ ε2
12 sin2(δ13 − φ)(1 + 3ε23 cosφ)

ε132
√

2
,

� sin θ23 ≈ −ε2
12 − ε2

13 + ε2
23 − 2ε12ε13 cos(δ13 − φ) + ε2

23 cos 2φ

4
√

2
,

� sin θ12 ≈ ε2
13(csc θ ′

12 − 3s′
12 − c′

12 cot θ ′
12 cos 2(δ13 − φ)) − 2s′

12ε
2
12

8

+
√

2c′
12ε12ε23 cosφ − ε13(

√
2c′

12ε23 cos δ13 + s′
12ε12 cos(δ13 − φ))

2
. (32)

The second order correction to the Jarlskog CP invariant is given by

� J ≈ − sin 2θ ′
12ε13ε23 sin(δ13 − 2φ)

4
√

2
− sin 2θ ′

12ε12ε23 sinφ

4
√

2
− cos 2θ ′

12ε12ε13 sin(δ13 − φ)

2
. (33)

The second order contributions to the ν2.ν3 unitarity triangle are given by

�Ue2U∗
e3 ≈ −c′

12(ε
2
12 − ε2

13)

2
+ s′

12ε23(e−iφε12 + eiδ13ε13)√
2

+ ic′
12ε12ε13 sin(δ13 − φ),

�Uμ2U∗
μ3 ≈ c′

12(ε
2
12 + 2ε2

23)

2
− e−iφs′

12ε12ε23√
2

− ic′
12ε12ε13 sin(δ13 − φ),

�Uτ2U∗
τ3 ≈ −c′

12(ε
2
13 + 2ε2

23)

2
− eiδ13 s′

12ε13ε23√
2

. (34)

The second order contributions to the νe.νμ triangle are given by

�Uμ1U∗
e1 ≈ sin 2θ ′

12(4ε2
12 + ε2

13 + ε2
23)

4
√

2
+ sin 2θ ′

12ε12ε13 cos(δ13 − φ)√
2

+ s′2
12ε12ε23 cosφ,

�Uμ2U∗
e2 ≈ − sin 2θ ′

12(4ε2
12 + ε2

13 + ε2
23)

4
√

2
− sin 2θ ′

12ε12ε13 cos(δ13 − φ)√
2

+ c′2
12ε12ε23 cosφ,

�Uμ3U∗
e3 ≈ −ε12ε23 cosφ. (35)
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