221 research outputs found

    Transcranial sonography for diagnosis of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In idiopathic Parkinson's disease (IPD) transcranial sonography (TCS) represents an alternative diagnostic method to verify clinical diagnosis. Although the phenomenon of an increased echogenicity of the Substantia nigra (SN) is well known this method is still not widly used in the diagnostic workup. Until now reliability of this method is still a matter of debate, partly because data only existed from a few laboratories using the same ultrasound machine. Therefore our study was conducted to test the reliability of this method by using a different ultrasound device and examining a large population of control and IPD subjects by two examiners to calculate interobserver reliability.</p> <p>Method</p> <p>In this study echogenicity of SN was examined in 199 IPD patients and 201 control subjects. All individuals underwent a neurological assessment including Perdue pegboard test and Webster gait test. Using a Sonos 5500 ultrasound device area of SN was measured, echogenicity of raphe, red nuclei, thalamus, caudate and lenticular nuclei, width of third and lateral ventricle were documented.</p> <p>Results</p> <p>We found a highly characteristic enlargement of the SN echogenic signal in IPD. The cut-off value for the SN area was established using a ROC curve with a sensitivity of 95% corresponding to an area of SN of 0.2 cm<sup>2 </sup>and was found to be equivalent to the cut-off values of other studies using different ultrasound devices.</p> <p>Conclusions</p> <p>Our study shows that TCS is a reliable and highly sensitive tool for differentiation of IPD patients from individuals without CNS disorders.</p

    Nutrient Availability Controls the Impact of Mammalian Herbivores on Soil Carbon and Nitrogen Pools in Grasslands

    Get PDF
    Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change

    Sensitivity of global soil carbon stocks to combined nutrient enrichment

    Get PDF
    Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm−2 year−1 (standard deviation 0.18 KgCm−2 year−1). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high‐latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios

    Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln(49 )TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes

    Get PDF
    BACKGROUND: Spinocerebellar ataxia type 17 (SCA17), a neurodegenerative disorder in man, is caused by an expanded polymorphic polyglutamine-encoding trinucleotide repeat in the gene for TATA-box binding protein (TBP), a main transcription factor. Observed pathogenic expansions ranged from 43 – 63 glutamine (Gln) codons (Gln(43–63)). Reduced penetrance is known for Gln(43–48 )alleles. In the vast majority of families with SCA17 an expanded CAG repeat interrupted by a CAA CAG CAA element is inherited stably. RESULTS: Here, we report the first pedigree with a Gln(49 )allele that is a) not interrupted, b) unstable upon transmission, and c) associated with reduced penetrance or very late age of onset. The 76-year-old father of two SCA17 patients carries the Gln(49 )TBP allele but presents without obvious neurological symptoms. His children with Gln(53 )and Gln(52 )developed ataxia at the age of 41 and 50. Haplotype analysis of this and a second family both with uninterrupted expanded and unstable pathological SCA17 alleles revealed a common core genotype not present in the interrupted expansion of an unrelated SCA17 patient. Review of the literature did not present instability in SCA17 families with expanded alleles interrupted by the CAA CAG CAA element. CONCLUSION: The presence of a Gln(49 )SCA17 allele in an asymptomatic 76-year-old male reams the discussion of reduced penetrance and genotypes producing very late disease onset. In SCA17, uninterrupted expanded alleles of TBP are associated with repeat instability and a common founder haplotype. This suggests for uninterrupted expanded alleles a mutation mechanism and some clinical genetic features distinct from those alleles interrupted by a CAA CAG CAA element

    Soil net nitrogen mineralisation across global grasslands

    Get PDF
    Soil nitrogen mineralisation (N-min), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net N-min) varies with soil properties and climate. However, because most global-scale assessments of net N-min are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net N-min across 30 grasslands worldwide. We find that realised N-min is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential N-min only weakly correlates with realised N-min, but contributes to explain realised net N-min when combined with soil and climatic variables. We provide novel insights of global realised soil net N-min and show that potential soil net N-min data available in the literature could be parameterised with soil and climate data to better predict realised N-min

    Cortical recovery of swallowing function in wound botulism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botulism is a rare disease caused by intoxication leading to muscle weakness and rapidly progressive dysphagia. With adequate therapy signs of recovery can be observed within several days. In the last few years, brain imaging studies carried out in healthy subjects showed activation of the sensorimotor cortex and the insula during volitional swallowing. However, little is known about cortical changes and compensation mechanisms accompanying swallowing pathology.</p> <p>Methods</p> <p>In this study, we applied whole-head magnetoencephalography (MEG) in order to study changes in cortical activation in a 27-year-old patient suffering from wound botulism during recovery from dysphagia. An age-matched group of healthy subjects served as control group. A self-paced swallowing paradigm was performed and data were analyzed using synthetic aperture magnetometry (SAM).</p> <p>Results</p> <p>The first MEG measurement, carried out when the patient still demonstrated severe dysphagia, revealed strongly decreased activation of the somatosensory cortex but a strong activation of the right insula and marked recruitment of the left posterior parietal cortex (PPC). In the second measurement performed five days later after clinical recovery from dysphagia we found a decreased activation in these two areas and a bilateral cortical activation of the primary and secondary sensorimotor cortex comparable to the results seen in a healthy control group.</p> <p>Conclusion</p> <p>These findings indicate parallel development to normalization of swallowing related cortical activation and clinical recovery from dysphagia and highlight the importance of the insula and the PPC for the central coordination of swallowing. The results suggest that MEG examination of swallowing can reflect short-term changes in patients suffering from neurogenic dysphagia.</p

    Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands

    Get PDF
    Anthropogenic activities are increasing nutrient inputs to ecosystems worldwide, with consequences for global carbon and nutrient cycles. Recent meta-analyses show that aboveground primary production is often co-limited by multiple nutrients; however, little is known about how root production responds to changes in nutrient availability. At twenty-nine grassland sites on four continents, we quantified shallow root biomass responses to nitrogen (N), phosphorus (P) and potassium plus micronutrient enrichment and compared below- and aboveground responses. We hypothesized that optimal allocation theory would predict context dependence in root biomass responses to nutrient enrichment, given variation among sites in the resources limiting to plant growth (specifically light versus nutrients). Consistent with the predictions of optimal allocation theory, the proportion of total biomass belowground declined with N or P addition, due to increased biomass aboveground (for N and P) and decreased biomass belowground (N, particularly in sites with low canopy light penetration). Absolute root biomass increased with N addition where light was abundant at the soil surface, but declined in sites where the grassland canopy intercepted a large proportion of incoming light. These results demonstrate that belowground responses to changes in resource supply can differ strongly from aboveground responses, which could significantly modify predictions of future rates of nutrient cycling and carbon sequestration. Our results also highlight how optimal allocation theory developed for individual plants may help predict belowground biomass responses to nutrient enrichment at the ecosystem scale across wide climatic and environmental gradients

    Linking changes in species composition and biomass in a globally distributed grassland experiment

    Get PDF
    Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.Fil: Ladouceur, Emma. Martin Luther University Halle-Wittenberg; Alemania. Universitat Leipzig; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Blowes, Shane A.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Chase, Jonathan M.. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Clark, Adam T.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. University of Graz; AustriaFil: Garbowski, Magda. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Universitat Leipzig; AlemaniaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Arnillas, Carlos Alberto. University of Toronto; CanadáFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Barrio, Isabel C.. Agricultural University of Iceland; IslandiaFil: Bharath, Siddharth. Atria University; IndiaFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Cadotte, Marc W.. University of Toronto; CanadáFil: Chen, Qingqing. Peking University; ChinaFil: Collins, Scott L.. University of New Mexico; Estados UnidosFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Du, Guozhen. Lanzhou University; ChinaFil: Ebeling, Anne. Universitat Jena; AlemaniaFil: Eisenhauer, Nico. Martin Luther University Halle—Wittenberg; Alemania. German Centre For Integrative Biodiversity Research (idiv) Halle-jena-leipzig; AlemaniaFil: Fay, Philip A.. USDA-ARS Grassland Soil and Water Research Lab; Estados UnidosFil: Hagenah, Nicole. University Of Pretoria; SudáfricaFil: Hautier, Yann. University of Utrecht; Países BajosFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Jónsdóttir, Ingibjörg S.. University of Iceland; IslandiaFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: Martina, Jason P.. Texas State University; Estados UnidosFil: Moore, Joslin L.. Arthur Rylah Institute For Environmental Research; Australia. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore