660 research outputs found
Discovery of the Optical Transient of the Gamma Ray Burst 990308
The optical transient of the faint Gamma Ray Burst 990308 was detected by the
QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after
the burst. Our photometry gives , , , and for times ranging from 3.28 to 3.47
hours after the burst. The colors correspond to a spectral slope of close to
. Within the standard synchrotron fireball model,
this requires that the external medium be less dense than , the
electrons contain of the shock energy, and the magnetic field energy
must be less than 24% of the energy in the electrons for normal interstellar or
circumstellar densities. We also report upper limits of at 132 s
(with LOTIS), from 132-1029s (with LOTIS), at 28.2 min
(with Super-LOTIS), and a 8.5 GHz flux of at 110 days (with the
Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to
be empty of any host galaxy to and . The lack of a host
galaxy likely implies that it is either substantially subluminous or more
distant than a red shift of .Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor
TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations
We present Herschel PACS photometry of 18 Plutinos and determine sizes and
albedos for these objects using thermal modeling. We analyze our results for
correlations, draw conclusions on the Plutino size distribution, and compare to
earlier results. Flux densities are derived from PACS mini scan-maps using
specialized data reduction and photometry methods. In order to improve the
quality of our results, we combine our PACS data with existing Spitzer MIPS
data where possible, and refine existing absolute magnitudes for the targets.
The physical characterization of our sample is done using a thermal model.
Uncertainties of the physical parameters are derived using customized Monte
Carlo methods. The correlation analysis is performed using a bootstrap Spearman
rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km
and geometric albedos to vary between 0.04 and 0.28. The average albedo of the
sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs,
Jupiter Family comets and other Trans-Neptunian Objects. We were able to
calibrate the Plutino size scale for the first time and find the cumulative
Plutino size distribution to be best fit using a cumulative power law with q =
2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the
bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On
the basis of a modified Spearman rank analysis technique our Plutino sample
appears to be biased with respect to object size but unbiased with respect to
albedo. Furthermore, we find biases based on geometrical aspects and color in
our sample. There is qualitative evidence that icy Plutinos have higher albedos
than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&
Nucleic acid visualization with UCSF Chimera
With the increase in the number of large, 3D, high-resolution nucleic acid structures, particularly of the 30S and 50S ribosomal subunits and the intact bacterial ribosome, advancements in the visualization of nucleic acid structural features are essential. Large molecular structures are complicated and detailed, and one goal of visualization software is to allow the user to simplify the display of some features and accent others. We describe an extension to the UCSF Chimera molecular visualization system for the purpose of displaying and highlighting nucleic acid characteristics, including a new representation of sugar pucker, several options for abstraction of base geometries that emphasize stacking and base pairing, and an adaptation of the ribbon backbone to accommodate the nucleic acid backbone. Molecules are displayed and manipulated interactively, allowing the user to change the representations as desired for small molecules, proteins and nucleic acids. This software is available as part of the UCSF Chimera molecular visualization system and thus is integrated with a suite of existing tools for molecular graphics
Tools for integrated sequence-structure analysis with UCSF Chimera
BACKGROUND: Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a) provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b) facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit); (c) can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d) interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. RESULTS: The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. CONCLUSION: The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is available for Microsoft Windows, Apple Mac OS X, Linux, and other platforms from
Construction and validation of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease cleavage
Proceedings of the 2003 Winter Simulation Conference
In this paper we have applied an interval representation of time to represent and reason about activities, events, actions and situations relevant to the construction domain. The first part of the paper formally defines the situational simulation environment and develops a set of temporal axioms which can be used to 1) Express precedence constraints between time intervals and 2) Capture the causal relationships between actions and events. The second part of the paper looks at an agent reasoning mechanism used to perceive and predict actions and foresee future consequences of present actions within the simulation environment. Agent reasoning is based on awareness derived from a knowledge base of facts which captures the causal nature of events in the construction management domain
- …
