1,962 research outputs found
Nitric acid scavenging by mineral and biomass burning aerosols
The abundance of gas phase nitric acid in the upper troposphere is overestimated by global chemistry-transport models, especially during the spring and summer seasons. Recent aircraft data obtained over the central US show that mineral aerosols were abundant in the upper troposphere during spring. Chemical reactions on mineral dust may provide an important sink for nitric acid. In regions where the mineral dust abundance is low in the upper troposphere similar HNO3 removal processes may occur on biomass burning aerosols. We propose that mineral and biomass burning aerosols may provide an important global sink for gas phase nitric acid, particularly during spring and summer when aerosol composition in the upper troposphere may be greatly affected by dust storms from east Asia or tropical biomass burning plumes
Recommended from our members
Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P
Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1 - 12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCHA3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde C2H 5CHO), peroxyacylnitrates (PANs) (CnH 2n+1COO2NO2), and organic nitrates (CnH2n+1ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH 3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (ΣOVOC) was nearly twice that of nonmethane hydrocarbons (Σ C2-C8 NMHC. Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH 3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HOx) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C yr-1) but remain poorly quantified. Copyright 2004 by the American Geophysical Union
The Ubiquity of the rms-flux relation in Black Hole X-ray Binaries
We have investigated the short term linear relation between the rms
variability and the flux in 1,961 observations of 9 black hole X-ray binaries.
The rms-flux relation for the 1-10 Hz range is ubiquitously observed in any
observation with good variability signal to noise (> 3 % 1-10 Hz fractional
rms). This concurs with results from a previous study of Cygnus X-1 (Gleissner
et. al. 2004), and extends detection of the rms-flux relation to a wider range
of states. We find a strong dependence of the flux intercept of the rms-flux
relation on source state; as the source transitions from the hard state into
the hard intermediate state the intercept becomes strongly positive. We find
little evidence for flux dependence of the broad-band noise within the PSD
shape, excepting a small subset of observations from one object in an anomalous
soft-state. We speculate that the ubiquitous linear rms-flux relation in the
broad band noise of this sample, representing a range of different states and
objects, indicates that its formation mechanism is an essential property of the
luminous accretion flow around black holes.Comment: 12 pages, 6 figures, accepted for publication in MNRA
Modeling the effect of plume-rise on the transport of carbon monoxide over Africa and its exports with NCAR CAM
International audienceWe investigated the effects of fire-induced plume-rise on the predicted export of carbon monoxide (CO) over Africa during SAFARI 2000 using the NCAR Community Atmosphere Model (CAM) with a CO tracer and plume-rise parameterization scheme. The plume-rise parameterization scheme simulates the consequences of strong buoyancy of hot gases emitted from biomass burning, including both dry and cloud-associated (pyrocumulus) lofting. The scheme was first adapted from a regional model. The current implementation of the plume-rise parameterization scheme into the global model provides an opportunity to examine the effect of plume-rise on long-range transport. The CAM simulation with the plume-rise parameterization scheme shows a substantial improvement of the agreements between the modeled and aircraft-measured vertical distribution of CO over southern Africa biomass burning area. The plume-rise mechanism plays a crucial role in lofting biomass burning pollutants to the middle troposphere. In the presence of deep convection we found that the plume-rise mechanism results in a decrease of CO concentration in the upper troposphere. The plume rise depletes the boundary layer, and thus leaves lower concentrations of CO to be lofted by the deep convection process. The effect of the plume-rise on free troposphere CO concentration is more important for the source area (short-distance transport) than for remote areas (long-distance transport). The plume-rise scheme also increases the CO export fluxes from Africa to the Atlantic and Indian Oceans. These results further confirm and extend previous findings in a regional model study. Effective lofting of large concentration of CO by the plume-rise mechanism also has implication for local air quality forecast in areas affected by other fire-related pollutants
UK sustainable drainage systems: past, present and future
Urban drainage has developed from an engineering discipline, concerned principally with public health and safety outcomes, into a multifaceted vision linking drainage with environmental and wider social and economic imperatives to deliver multifunctional outcomes. UK attention is too often focused on surface water as ‘a problem’, despite international progress and initiatives showing that an ‘opportunity-centred’ approach needs to be taken. Sustainable drainage systems, or ‘Suds’, can, when they are part of an integrated approach to water management, cost-effectively provide many benefits beyond management of water quality and quantity. New tools are available that can design Suds for maximum value to society but this requires greater collaboration across disciplines to seize all of the opportunities available. This paper introduces those tools and a roadmap for their use, including guidance, design objectives and criteria for maximising benefits. These new supporting tools and guidance can help to provide a business case for greater use of Suds in future
Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope
We report on a study of the long-term stability and absolute accuracy of an
atom interferometer gyroscope. This study included the implementation of an
electro-optical technique to reverse the vector area of the interferometer for
reduced systematics and a careful study of systematic phase shifts. Our data
strongly suggests that drifts less than 96 deg/hr are possible after
empirically removing shifts due to measured changes in temperature, laser
intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR
Reduced middle ear infection with non-typeable Haemophilus influenzae, but not Streptococcus pneumoniae, after transition to 10-valent pneumococcal non-typeable H. influenzae protein D conjugate vaccine
BackgroundIn October 2009, 7-valent pneumococcal conjugate vaccine (PCV7: PrevenarTM Pfizer) was replaced in the Northern Territory childhood vaccination schedule by 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10; Synflorix™ GlaxoSmithKline Vaccines). This analysis aims to determine whether the reduced prevalence of suppurative otitis media measured in the PHiD-CV10 era was associated with changes in nasopharyngeal (NP) carriage and middle ear discharge (ED) microbiology in vaccinated Indigenous children.MethodsSwabs of the NP and ED were collected in remote Indigenous communities between September 2008 and December 2012. Swabs were cultured using standardised methods for otitis media pathogens. Children less than 3 years of age and having received a primary course of 2 or more doses of one PCV formulation and not more than one dose of another PCV formulation were included in the primary analysis; children with non-mixed single formulation PCV schedules were also compared.ResultsNP swabs were obtained from 421 of 444 (95 %) children in the PCV7 group and 443 of 451 (98 %) children in the PHiD-CV10 group. Non-mixed PCV schedules were received by 333 (79 %) and 315 (71 %) children, respectively. Pneumococcal (Spn) NP carriage was 76 % and 82 %, and non-typeable Haemophilus influenzae (NTHi) carriage was 68 % and 73 %, respectively. ED was obtained from 60 children (85 perforations) in the PCV7 group and from 47 children (59 perforations) in the PHiD-CV10 group. Data from bilateral perforations were combined. Spn was cultured from 25 % and 18 %, respectively, and NTHi was cultured from 61 % and 34 % respectively (p = 0.008).ConclusionsThe observed reduction in the prevalence of suppurative OM in this population was not associated with reduced NP carriage of OM pathogens. The prevalence of NTHi-infected ED was lower in PHiD-CV10 vaccinated children compared to PCV7 vaccinated children. Changes in clinical severity may be explained by the action of PHiD-CV10 on NTHi infection in the middle ear. Randomised controlled trials are needed to answer this question
Recommended from our members
A case study of boundary layer ventilation by convection and coastal processes
It is often assumed that ventilation of the atmospheric boundary layer is weak in the absence of fronts, but is this always true? In this paper we investigate the processes responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May 2005 using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, turbulent mixing followed by large-scale ascent, a sea breeze circulation and coastal outflow. Vertical distributions of tracer are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. Coastal outflow and the sea breeze circulation were found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2 km. A combination of coastal outflow, the sea breeze circulation, turbulent mixing and large-scale ascent ventilated 46% of the boundary layer tracer, of which 10% was above 2 km. Finally, coastal outflow, the sea breeze circulation, turbulent mixing, large-scale ascent and shallow convection together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2 km. Hence this study shows that significant ventilation of the boundary layer can occur in the absence of fronts (and thus during high-pressure events). Turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer
From on-road to off : transfer learning within a deep convolutional neural network for segmentation and classification of off-road scenes.
Real-time road-scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we take an existing CNN architecture, pre-trained for urban road-scene understanding, and retrain it towards the task of classifying off-road scenes, assessing the network performance within the training cycle. Within the paradigm of transfer learning we analyse the effects on CNN classification, by training and assessing varying levels of prior training on varying sub-sets of our off-road training data. For each of these configurations, we evaluate the network at multiple points during its training cycle, allowing us to analyse in depth exactly how the training process is affected by these variations. Finally, we compare this CNN to a more traditional approach using a feature-driven Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding
- …
