509 research outputs found
Leaf nitrogen from first principles: field evidence for adaptive variation with climate
Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north–south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon–nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca – themselves in part environmentally determined – with Rubisco activity, as predicted from local growing conditions. This finding is consistent with a "plant-centred" approach to modelling, emphasizing the adaptive regulation of traits. Models that account for biodiversity will also need to partition community-level trait variation into components due to phenotypic plasticity and/or genotypic differentiation within species vs. progressive species replacement, along environmental gradients. Our analysis suggests that variation in Narea is about evenly split between these two modes.Ning Dong, Iain Colin Prentice, Bradley J. Evans, Stefan Caddy-Retalic, Andrew J. Lowe and Ian J. Wrigh
Bioclimatic transect networks: powerful observatories of ecological change
First published: 19 May 2017Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.Stefan Caddy-Retalic, Alan N. Andersen, Michael J. Aspinwall, Martin F. Breed, Margaret Byrne, Matthew J. Christmas, Ning Dong, Bradley J. Evans, Damien A. Fordham, Greg R. Guerin, Ary A. Hoffmann, Alice C. Hughes, Stephen J. van Leeuwen, Francesca A. McInerney, Suzanne M. Prober, Maurizio Rossetto, Paul D. Rymer, Dorothy A. Steane, Glenda M. Wardle, Andrew J. Low
Enemies with benefits: parasitic endoliths protect mussels against heat stress
Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than nonparasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation
Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?
Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions
The participation myth
Policy rhetoric around strategies to and the value of increasing participation in the arts has been well documented internationally over more than a decade. But in the UK, which is the focus for this article, targets to increase participation have been consistently missed and there remains a direct correlation between those taking part in cultural activity and their socio-economic status. The starting point for this article is to examine the barriers to increasing participation in the arts and question the way that such policy has been implemented within the English context, which may have relevance for policy making in other countries. What is demonstrated is that policy implementation is influenced by vested interest of those in receipt of funding and that a narrow range of voices, from a powerful cultural elite, are involved in the decision making in the arts. The article makes a case for widening the range of voices heard in decision making in order to support both artistic practice and public engagement
Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels
The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise
Particle-size distribution analysis of soils using laser diffraction
The use of laser diffraction for the particle size distribution analysis of the sub-63 μm fraction of soil samples is described. Each sub-63 μm fraction was obtained from the wet sieving of 1500 mg of whole soil. Using similarity probabilities, the data obtained, when combined with other information from wet sieving and/or organic matter content, will enable the correct identity of a given soil sample with that of an unknown to be made. Although the sub-63 μm fraction can account for 450 mg or more of the total soil content, analyses of this fraction can be conducted on sample sizes as small as 100 mg
Projected climate change implications for the South Australian flora
South Australia has warmed since 1950 and further temperature increases are forecast this century. We explore the implications of climatic warming for individual plant species and the State’s plant biodiversity, which is significant and includes 418 endemic taxa. Environmental constraints and interspecific interactions operate on species to determine which survive in which environment, with resulting compositional signatures. Climate change influences such ‘filtering’ processes via mechanisms such as altered mortality or recruitment rates and indirectly through fire regimes. While modest environmental changes can be absorbed within a given ecological community, significant change will eventually drive species turnover. We use the Hopbush, Dodonaea viscosa subsp. angustissima (DC.) J.G.West as a case study that shows morphological adaptations to arid conditions (narrower leaves and higher stomatal densities), observed in more northern populations in South Australia. Leaves of this species have narrowed through time in conjunction with climatic warming, matching predictions from the spatial cline. Genomic sequencing has also revealed genetic correlations with temperature and aridity, suggesting key climate change variables are impacting the selection of functional genes including those linked to leaf characters. Despite such adaptations in individual species, plant community composition is sensitive to small changes in climate. As a result, predicted climatic changes may ultimately drive complete species turnover, if the more severe scenarios are realised. Spatial analysis highlights a climatic transition zone, between desert and Mediterranean South Australia, where community composition changes more rapidly with climate and this area is therefore likely to be more vulnerable to climate change. Notwithstanding potential evolutionary adaptation, significant climate change will influence ecophysiology, leading to changes in primary productivity and water stress and is predicted to ultimately lead to lower species richness, altered species composition and more uneven abundances. Although we have an empirical understanding of climate sensitivity for South Australian plant communities, we need sophisticated ecological forecasting that considers complex interactions with fire, habitat configuration and evolutionary adaptation.G.R. Guerin, M.J. Christmas, B. Sparrow, A.J. Low
Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past
The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs
- …
