119 research outputs found

    Linking object boundaries at scale: a common mechanism for size and shape judgments

    Get PDF
    AbstractThe area over which boundary information contributes to the determination of the center of an extended object was inferred from results of a bisection task. The object to be bisected was a rectangle with two long sinusoidally modulated sides, i.e. a wiggly rectangle. The spatial frequency and amplitude of the edge modulation were varied. Two object widths were tested. The modulation of the perceived center approximately equaled that of the edges at very low edge modulation frequencies and decreased in amplitude with increasing edge modulation frequency. The edge modulation had a greater modulating effect on the perceived center for the narrower object than for the wider object. This scaling with object width didn't follow perfect zoom invariance but was precisely matched by the scaling of the bisection threshold with width, strongly supporting the idea that the same mechanism determines both the location of the perceived center for these stimuli and its variance. We propose that this mechanism is the linking of object boundaries at a scale determined by the object width

    A role for eyebrows in regulating the visibility of eye gaze direction

    Get PDF
    The human eye is unique amongst those of primates in having white sclera against which the dark iris is clearly visible. This high-contrast structure makes the gaze direction of a human potentially easily perceptible to others. For a social creature such as a human, the ability to perceive the direction of another’s gaze may be very useful, since gaze usually signals attention. We report data showing that the accuracy of gaze deviation detection is independent of viewing distance up to a certain critical distance, beyond which it collapses. This is, of itself, surprising since most visual tasks are performed better at closer viewing distances. Our data also show that the critical distance, but not accuracy, is affected by the position of the eyebrows so that lowering the eyebrows reduces the critical distance. These findings show that mechanisms exist by which humans could expand or restrict the availability of their gaze direction to others. A way to regulate the availability of the gaze-direction signal could be an advantage. We show that an interpretation of eyebrow function in these terms provides a novel explanation for several well-known eyebrow actions, including the eyebrow flash

    Pupil responses associated with coloured afterimages are mediated by the magno-cellular pathway

    Get PDF
    Sustained fixation of a bright coloured stimulus will, on extinction of the stimulus and continued steady fixation, induce an afterimage whose colour is complementary to that of the initial stimulus; an effect thought to be caused by fatigue of cones and/or of cone-opponent processes to different colours. However, to date, very little is known about the specific pathway that causes the coloured afterimage. Using isoluminant coloured stimuli recent studies have shown that pupil constriction is induced by onset and offset of the stimulus, the latter being attributed specifically to the subsequent emergence of the coloured afterimage. The aim of the study was to investigate how the offset pupillary constriction is generated in terms of input signals from discrete functional elements of the magno- and/or parvo-cellular pathways, which are known principally to convey, respectively, luminance and colour signals. Changes in pupil size were monitored continuously by digital analysis of an infra-red image of the pupil while observers viewed isoluminant green pulsed, ramped or luminance masked stimuli presented on a computer monitor. It was found that the amplitude of the offset pupillary constriction decreases when a pulsed stimulus is replaced by a temporally ramped stimulus and is eliminated by a luminance mask. These findings indicate for the first time that pupillary constriction associated with a coloured afterimage is mediated by the magno-cellular pathway. © 2003 Elsevier Science Ltd. All rights reserved

    Hybrid video quality prediction: reviewing video quality measurement for widening application scope

    Get PDF
    A tremendous number of objective video quality measurement algorithms have been developed during the last two decades. Most of them either measure a very limited aspect of the perceived video quality or they measure broad ranges of quality with limited prediction accuracy. This paper lists several perceptual artifacts that may be computationally measured in an isolated algorithm and some of the modeling approaches that have been proposed to predict the resulting quality from those algorithms. These algorithms usually have a very limited application scope but have been verified carefully. The paper continues with a review of some standardized and well-known video quality measurement algorithms that are meant for a wide range of applications, thus have a larger scope. Their individual artifacts prediction accuracy is usually lower but some of them were validated to perform sufficiently well for standardization. Several difficulties and shortcomings in developing a general purpose model with high prediction performance are identified such as a common objective quality scale or the behavior of individual indicators when confronted with stimuli that are out of their prediction scope. The paper concludes with a systematic framework approach to tackle the development of a hybrid video quality measurement in a joint research collaboration.Polish National Centre for Research and Development (NCRD) SP/I/1/77065/10, Swedish Governmental Agency for Innovation Systems (Vinnova

    Perceptual Learning in the Absence of Task or Stimulus Specificity

    Get PDF
    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment

    A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks

    Get PDF
    The spike activity of cells in some cortical areas has been found to be correlated with reaction times and behavioral responses during two-choice decision tasks. These experimental findings have motivated the study of biologically plausible winner-take-all network models, in which strong recurrent excitation and feedback inhibition allow the network to form a categorical choice upon stimulation. Choice formation corresponds in these models to the transition from the spontaneous state of the network to a state where neurons selective for one of the choices fire at a high rate and inhibit the activity of the other neurons. This transition has been traditionally induced by an increase in the external input that destabilizes the spontaneous state of the network and forces its relaxation to a decision state. Here we explore a different mechanism by which the system can undergo such transitions while keeping the spontaneous state stable, based on an escape induced by finite-size noise from the spontaneous state. This decision mechanism naturally arises for low stimulus strengths and leads to exponentially distributed decision times when the amount of noise in the system is small. Furthermore, we show using numerical simulations that mean decision times follow in this regime an exponential dependence on the amplitude of noise. The escape mechanism provides thus a dynamical basis for the wide range and variability of decision times observed experimentally

    Temporal Integration of Movement: The Time-Course of Motion Streaks Revealed by Masking

    Get PDF
    Temporal integration in the visual system causes fast-moving objects to leave oriented ‘motion streaks’ in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over 100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving (‘streaky’) and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from to ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks
    • …
    corecore