15 research outputs found

    Biometeorology research in Europe

    Get PDF

    How electronic devices affect the sleep of young people: summary of current knowledge

    Get PDF
    Introduction and purpose: The impact of electronic devices on our daily lives is becoming increasingly significant. The contemporary generation of young people is growing up in a world where smartphones, tablets, computers, and other electronic devices are widely available and utilized. Scientists are contemplating the challenges posed by excessive exploitation of electronics on the health of young individuals. The aim of the article is to present the harmful effects of using electronic devices before sleep in young people, considering medical aspects such as sleep disorders and their influence on overall psychophysical health. Summary: Electronic devices negatively affect the sleep of young people by reducing sleep time and delaying the sleep onset phase. The main problem is the use of electronic devices without time limits. In the era of technology, it is significantly important to raise awareness among young people about the importance of sleep hygiene and how blue light emitted by electronic devices affects its quality

    Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range

    Get PDF
    Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.Peer reviewe

    Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range

    Get PDF
    Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.</p

    Ecohydrological Changes and Resilience of a Shallow Lake Ecosystem under Intense Human Pressure and Recent Climate Change

    No full text
    In this work we present the complicated situation of a faunistically and floristically valuable ecosystem of the Rakutowskie Lake wetlands complex, which is part of the Special Protection Area for Birds of &ldquo;Błota Rakutowskie&rdquo; (PLB40001) and &ldquo;Błota Kł&oacute;cieńskie&rdquo; Habitats Directive Sites (PLH040031) included in the Natura 2000 network. Numerous ornithological observations have drawn our attention to the problem of rapidly progressing overgrowth of the lake and significant fluctuations in its water surface area. These fluctuations, especially in the spring period, significantly limit safe reproduction possibilities of very rare species of water&ndash;marsh birds. A multidirectional and comprehensive spectrum of research works allowed us to determine the genesis of the ecosystem and show that the shallow lake is undergoing the final stage in its evolution. The economic aspect of human activity (changes in land use and land development works) has contributed to serious degradation of the ecosystem. Climate changes observed in recent years (increased air temperature and, consequently, higher evaporation) additionally deepen and accelerate this process. The research made it possible to determine how the ecosystem functions today, but it is also an attempt to determine our predictions about its future

    Ericoid shrub encroachment shifts aboveground–belowground linkages in three peatlands across Europe and Western Siberia

    No full text
    Abstract In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3‐year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open‐top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water‐level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large‐scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic–continental and temperate–boreal (subarctic) gradient (France–Poland–Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral‐N‐driven to a fungi‐mediated organic‐N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions

    Drought as a stress driver of ecological changes in peatland - A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland

    No full text
    corecore