23 research outputs found

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust

    O conhecimento e a insterdisciplibaridade: primeiras reflexões

    No full text
    Este grupo interdisciplinar formou-se a partir de interesses comuns e da necessidade de discutir a sua prática pedagógica dentro do Departamento de Métodos e Técnicas da Educação, do Setor de Educação da UFPR. Embora o primeiro momento fosse gerado pela equipe docente que trabalha no projeto de Alfabetização de Adultos, outros participantes foram se agregando ao grupo inicial

    Metabolic and Genetic Diversity of Mesophilic and Thermophilic Bacteria Isolated from Composted Municipal Sludge on Poly-e-caprolactones

    Get PDF
    Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-e-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process
    corecore