57 research outputs found

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Investigation of late Pleistocene and early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analysis of red deer

    Get PDF
    Abstract: El Mirón Cavewas occupied by humans for over 40,000 years. Evidence of LateMousterian,Gravettian, Solutrean, Magdalenian, Azilian, Mesolithic, Neolithic, Chalcolithic, Bronze Age and Mediaeval occupations has been found in the cave. Understanding the local environmental conditions during the occupations is crucial for gaining an insight into the lifeways of El Mirón's inhabitants as they relied on the surrounding region and its natural resources for their subsistence. 170 bones of hunted red deer recovered from the cave were sampled for carbon and nitrogen stable isotope analyses with the aim of reconstructing the palaeoenvironment and palaeoclimate during the human occupation. The results show that the surrounding landscape underwent considerable environmental change during the Late Pleistocene and Early to Mid-Holocene. Shifts in d13C values between the Last Glacial Maximum, Heinrich stadial 1, Heinrich event 1, the Late-glacial interstadial and the onset of the Holocene are likely to reflect changes in water availability and temperature. Deer d15N generally increased over time indicating the regeneration of soil biological activity and nitrogen cycling, which was temporarily halted during the Younger Dryas. Comparison of the El Mirón results with those of 300 deer from other regions of Europe shows geographical variations in the timing and magnitude of the variation in d13C and d15N values. This variation tracks local climate (temperature andwater availability) and environmental (vegetation and forest development) change

    Development of a standardized methodology for phenotypical characterizations in apple

    Get PDF
    4 Pags.- 2 Tabls. Articles derived from XIV EUCARPIA Symposium on Fruit Breeding and Genetics (Bologna,Italy. June 14-18 2015) . The definitive version is available at: http://www.actahort.org/index.htmThe description of phenotypic traits in apple cultivars is generally performed using internationally agreed descriptors such as UPOV guidelines, which defines for each trait several states of expression. However, it is not always possible to classify a cultivar unambiguously using those guidelines, because in practice the states are not clearly enough defined or the example cultivars are not always available in the collections. This work presents the results of a harmonization project performed by the teams responsible of the main apple germplasm collections in Spain. The objective was to develop a standardized method for the 57 traits included in the TG/14/9 UPOV guidelines for apple characterization, defining their states of expression in a clear and unambiguous way for Spanish germplasm. Phenotypic data collected for more than 1,600 accessions from Spanish collections were used and the method to define each state depended on the type of expression. For quantitative traits the number of states and their limits were defined according to the variability that exists within and between accessions. For qualitative traits, high-resolution images clearly depicting each state were selected. A standardized characterization protocol for the 57 traits of apple germplasm has been provided, enabling to comparing properly the phenotypes of Spanish genetic resources.This Project has been funded by the Spanish Ministry of Science and Innovation/National Institute for Agricultural and Food Research and Technology (RF2011- 00017-C05-00).Peer reviewe

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance

    Get PDF
    Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum(ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPK alpha 1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism
    corecore