557 research outputs found

    Comment on "Identifying Molecular Orientation of Individual C<sub>60</sub> on a Si(111)-(7x7) Surface"

    Get PDF
    A Comment on the Letter by J. G. Hou, et al., Phys. Rev. Lett. 83, 3001 (1999)

    Epidemiology of bacterial co-infections and risk factors in COVID-19-hospitalized patients in Spain: a nationwide study

    Get PDF
    Background: We performed a nationwide population-based retrospective study to describe the epidemiology of bacterial co-infections in coronavirus disease 2019 (COVID-19)-hospitalized patients in Spain in 2020. We also analyzed the risk factors for co-infection, the etiology and the impact in the outcome. Methods: Data were obtained from records in the Minimum Basic Data Set (MBDS) of the National Surveillance System for Hospital Data in Spain, provided by the Ministry of Health and annually published with 2 years lag. COVID-19 circulated in two waves in 2020: from its introduction to 31st June and from 1st July to 31st December. The risk of developing a healthcare-associated bacterial co-infection and the risk for in-hospital and intensive care unit (ICU) mortality in co-infected patients was assessed using an adjusted logistic regression model. Results: The incidence of bacterial co-infection in COVID-19 hospitalized patients was 2.3%. The main risk factors associated with bacterial co-infection were organ failure, obesity and male sex. Co-infection was associated with worse outcomes including higher in-hospital, in-ICU mortality and higher length of stay. Gram-negative bacteria caused most infections. Causative agents were similar between waves, although higher co-infections with Pseudomonas spp. were detected in the first wave and with Haemophilus influenzae and Streptococcus pneumoniae in the second. Conclusions: Co-infections are not as common as those found in other viral respiratory infections; therefore, antibiotics should be used carefully. Screening for actual co-infection to prescribe antibiotic therapy when required should be performed.This work was supported by Instituto de Salud Carlos III (COV20/00491, PI18/01238, CIBERINFEC CB21/13/00051), Junta de Castilla y León (VA321P18, GRS 1922/A/19, GRS 2057/A/19), Consejería de Educación de Castilla y León (VA256P20) and Fundación Ramón Areces (CIVP19A5953). L. Sánchez-de Prada received a Río Hortega grant (CM20/00138) from Instituto Carlos III (Co-funded by European Regional Development Fund/European Social Fund ‘A way to make Europe’/’Investing in your future’).S

    The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud?

    Get PDF
    (Abridged) We present new, deep HI line and 20-cm radio continuum data of the very puzzling blue compact dwarf galaxy NGC 5253, obtained with the ATCA as part of the `Local Volume HI Survey' (LVHIS). Our low-resolution HI maps show the disturbed HI morphology that NGC 5253 possesses, including tails, plumes and detached HI clouds. The high-resolution map reveals an HI plume at the SE and an HI structure at the NW that surrounds an Ha shell. We confirm that the kinematics of the neutral gas are highly perturbed and do not follow a rotation pattern. We discuss the outflow and infall scenarios to explain such disturbed kinematics, analyze the environment in which it resides, and compare it properties with those observed in similar star-forming dwarf galaxies. The radio-continuum emission of NGC 5253 is resolved and associated with the intense star-forming region at the center of the galaxy. We complete the analysis using multiwavelength data extracted from the literature. We estimate the SFR using this multiwavelength approach. NGC 5253 does not satisfy the Schmidt-Kennicutt law of star-formation, has a very low HI mass-to-light ratio when comparing with its stellar mass, and seems to be slightly metal-deficient in comparison with starbursts of similar baryonic mass. Taking into account all available multiwavelength data, we conclude that NGC 5253 is probably experiencing the infall of a diffuse, low-metallicity HI cloud along the minor axis of the galaxy, which is comprising the ISM and triggering the powerful starburst. The tidally disturbed material observed at the east and north of the galaxy is a consequence of this interaction, which probably started more than 100 Myr ago. The origin of this HI cloud may be related with a strong interaction between NGC 5253 and the late-type spiral galaxy M 83 in the past.Comment: 19 pages, 12 figures, accepted for publication in MNRA

    Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer

    Get PDF
    Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient′s cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC

    Probing the Nuclear and Circumnuclear Activity of NGC1365 in the Infrared

    Get PDF
    We present new far-infrared (70-500micron) Herschel PACS and SPIRE imaging observations as well as new mid-IR Gemini/T-ReCS imaging (8.7 and 18.3micron) and spectroscopy of the inner Lindblad resonance (ILR) region (R<2.5kpc) of the spiral galaxy NGC1365. We complemented these observations with archival Spitzer imaging and spectral mapping observations. The ILR region of NGC1365 contains a Seyfert 1.5 nucleus and a ring of star formation with an approximate diameter of 2kpc. The strong star formation activity in the ring is resolved by the Herschel/PACS imaging data, as well as by the Spitzer 24micron continuum emission, [NeII]12.81micron line emission, and 6.2 and 11.3micron PAH emission. The AGN is the brightest source in the central regions up to lambda~24micron, but it becomes increasingly fainter in the far-infrared when compared to the emission originating in the infrared clusters (or groups of them) located in the ring. We modeled the AGN unresolved infrared emission with the CLUMPY torus models and estimated that the AGN contributes only to a small fraction (~5%) of the infrared emission produced in the inner ~5kpc. We fitted the non-AGN 24-500micron spectral energy distribution of the ILR region and found that the dust temperatures and mass are similar to those of other nuclear and circumnuclear starburst regions. Finally we showed that within the ILR region of NGC1365 most of the on-going star formation activity is taking place in dusty regions as probed by the 24micron emission.Comment: Accepted for publication in MNRA

    Coupling carbon nanotube mechanics to a superconducting circuit

    Full text link
    The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level
    corecore