49 research outputs found

    Relationship between starting and finishing position in World Cup BMX racing

    Get PDF
    The BMX start is one of the most important aspects of BMX racing and has been deemed by coaches as one of the strongest determining factors of finish line placing. The present study analysed the correlation between elite BMX riders and their relative position at the start of a BMX race in relation to finish line placing. Data from 348 riders results in 175 elite races in the four 2012 Union Cycliste Internationale (UCI) world cup events were analysed. Time gates were placed in four positions around each BMX track and the data sets were analysed using Kendall's tau-b bivariante correlation. A strong correlation was established at the second time gate for both males (t=0.581, P<0.01) and females (t=0.571, P<0.01). The correlation between riders' final placing was greater in positions 1st to 3rd (t=0.586, P <0.01. 4th to 8th t=0.249, P <0.01) compared to riders placed 4th to 8th (t=0.519, P <0.01. 4th to 8th t=0.372, P <0.01.) for both male and female riders respectively. In conclusion, a strong correlation exists between riders position 8-10 s into a race. Therefore, focusing on a riders' ability to gain placings at the start of a race will have an effect on their finish line position.N/

    Effect of cadence selection on peak power and time of power production in elite BMX riders; a laboratory based study.

    Get PDF
    The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140revs·min-1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all three tests were recorded. The BMX riders produced peak power (1105±139W) at 100revs·min-1 with lower peak power produced at 80revs:min-1 (1060±69W, (F(2,15)=3.162; p=.266; η2 =0.960), 120revs·min-1 (1077±141W, (F(2,15)=4.348; p=.203; η2 =0.970) and 140revs·min-1 (1046±175W, (F(2,15)=12.350; p=0.077; η2 =0.989). The shortest time to power production was attained at 120revs·min-1 in 2.5±1.07s. Whilst a cadence of 80revs:min-1 (3.5±0.8s, (F(2,15)=2.667; p=.284; η2 =0.800) 100revs:min-1 (3.00±1.13s, (F(2,15)=24.832; p=.039; η2 =0.974) and 140revs:min-1 (3.50±0.88s, (F(2,15)=44.167; p=.006; η2 =0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios

    Velocity production in elite BMX riders: a field based study using a SRM power meter

    Get PDF
    The aim of this study was to analyze the production of velocity in bicycle motocross (BMX) compared to other cycling disciplines. Six elite BMX riders, 5 males and 1 female who competed and trained regularly for a period of 12 yrs ± 2 agreed to take part in this study. Each rider performed 3, 50-m sprint tests and a single 200 m fatigue test. The riders’ peak power, fatigue index, power to weight ratio, and cycling revolution per minute were analyzed using a Schoberer Rad Messtechnik (SRM) BMX power meter. The BMX riders’ peak power and power to weight ratio were all found to be similar to those in other sprint cycling events. Peak power outputs of 1539 ± 148 W and 1030 W were recorded with mean power to weight ratios of 21.29 ± 0.84 W·kg-1 and 16.65 W·kg-1 . The BMX riders’ power fatigue index was found to be higher than other sprint events as riders fatigued at a greater rate. Mean fatigue index was 61.19 ± 5.97 W·sec-1 for the male riders and 53.04 W·sec-1 for the female rider. A notable finding of this study was the relationship of cycling cadence (rev·min-1 ), peak power (Watts) and velocity (mi·h-1 ). This relationship suggests once a BMX rider achieves peak power their pedaling cadence becomes the major contributory factor to velocity production.N/

    Influence of wheel size on muscle activity and tri-axial accelerations during Cross-Country mountain biking

    Get PDF
    This study aimed to investigate the influence of different mountain bike wheel diameters on muscle activity and whether larger diameter wheels attenuate muscle vibrations during cross-country riding. Nine male competitive mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) participated in the study. Riders performed one lap at race pace on 26, 27.5 and 29 inch wheeled mountain bikes. sEMG and acceleration (RMS) were recorded for the full lap and during ascent and descent phases at the gastrocnemius, vastus lateralis, biceps brachii and triceps brachii. No significant main effects were found by wheel size for each of the four muscle groups for sEMG or acceleration during the full lap and for ascent and descent (P > .05). When data were analysed between muscle groups, significant differences were found between biceps brachii and triceps brachii (P < .05) for all wheel sizes and all phases of the lap with the exception of for the 26 inch wheel during the descent. Findings suggest wheel diameter has no influence on muscle activity and vibration during mountain biking. However, more activity was observed in the biceps brachii during 26 inch wheel descending. This is possibly due to an increased need to manoeuvre the front wheel over obstacles

    The effect of mountain bike wheel size on Cross-Country performance

    Get PDF
    The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min−1) and velocity (km · h−1) were recorded for the whole lap and during ascent and descent sections. One-way repeated measure ANOVA was used to determine significant differences. Results revealed no significant main effects for any variables by wheel size during all trials, with the exception of cadence during the descent (F(2, 16) = 8.96; P = .002; P2 = .53). Post hoc comparisons revealed differences lay between the 26″ and 29″ wheels (P = .02). The findings indicate that wheel size does not significantly influence performance during cross-country when ridden by trained mountain bikers, and that wheel choice is likely due to personal choice or sponsorship commitments

    Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists

    Get PDF
    The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p <= 0.001, 34 ± 9%) and reduced time of power production (p <= 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control
    corecore