78 research outputs found

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Heterogeneity of phenotype and function reflects the multistage development of t follicular helper cells

    Get PDF
    T follicular helper cells (Tfh) provide crucial signals for germinal center (GC) formation, but Tfh populations are heterogeneous. While PD1hi Tfh are important in the GC response, the function of the PD1lo Tfh-like subset is unknown. We show that these cells, like the PD1hi GC–Tfh, depend upon B cells; however, their entry to follicles is independent of CXCR5 or cognate interactions with B cells. The differentiation into PD1hi Tfh is dependent on MHC class II interactions with B cells and requires CXCR5. Our data suggest a Tfh differentiation pathway that is initially B cell-independent, then dependent on non-cognate B cell interactions, and finally following cognate interaction with B cells and CXCR5-ligands allows the formation of GC–Tfh. The PD1lo Tfh-like cells make early cytokine responses and may represent precursors of CD4 memory cells

    Opsonising antibodies to P. falciparum Merozoites associated with immunity to clinical malaria

    Get PDF
    Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG). Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i) increase with age, ii) be enhanced by concurrent infection, and iii) correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria

    NK Cells:Uncertain Allies against Malaria

    Get PDF
    Until recently, studies of natural killer (NK) cells in infection have focused almost entirely on their role in viral infections. However, there is an increasing awareness of the potential for NK cells to contribute to the control of a wider range of pathogens, including intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic diseases in the developing world and the devastating effects these pathogens have on large numbers of vulnerable people, investigating interactions between NK cells and parasitized host cells presents the opportunity to reveal novel immunological mechanisms with the potential to aid efforts to eradicate these diseases. The capacity of NK cells to produce inflammatory cytokines early after malaria infection, as well as a possible role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of NK cells in this disease. However, NK cells may also contribute to overproduction of pro-inflammatory cytokines and the consequent immunopathology. As comparatively little is known about the role of NK cells later in the course of infection, and growing evidence suggests that heterogeneity in NK cell responses to malaria may be influenced by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells might directly interact with parasitized cells may reveal a new role for these cells in the course of malaria infection

    Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection

    Get PDF
    CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses

    Type I Interferons Induce T Regulatory 1 Responses and Restrict Humoral Immunity during Experimental Malaria

    Get PDF
    We thank Christopher Hunter and Bob Axtell for critical feedback, and the Flow Cytometry Laboratory at OUHSC for technical assistance.Author Summary Humoral immunity is essential for host resistance to pathogens that trigger highly inflammatory immune responses, including Plasmodium parasites, the causative agents of malaria. Long-lived, secreted antibody responses depend on a specialized subset of CD4 T cells called T follicular helper (Tfh) cells. However, anti-Plasmodium humoral immunity is often short-lived, non-sterilizing, and immunity rapidly wanes, leaving individuals susceptible to repeated bouts of malaria. Here we explored the relationship between inflammatory type I interferons, the regulation of pathogen-specific CD4 T cell responses, and humoral immunity using models of experimental malaria and systemic virus infection. We identified that type I interferons promote the formation and accumulation of pathogen-specific CD4 T regulatory 1 cells that co-express interferon-gamma and interleukin-10. Moreover, we show that the combined activity of interferon-gamma and interleukin-10 limits the magnitude of infection-induced Tfh responses, the secretion of parasite-specific secreted antibody, and parasite control. Our study provides new insight into the regulation of T regulatory 1 responses and humoral immunity during inflammatory immune reactions against systemic infections.Yeshttp://www.plospathogens.org/static/editorial#pee

    B cell responses during severe malaria: the impact of inflammation on T follicular helper cell and germinal centre responses

    No full text
    © 2015 Dr. Victoria Ryg-CornejoDespite many advances in malaria control and elimination, infection by Plasmodium remains a significantly widespread cause of morbidity and mortality worldwide. Naturally acquired immunity to the parasite plays an important role in protection against malaria infection and the development of symptomatic disease. However, no evidence exists of sterile immunity to the disease and the development of sustained clinically protective antibody responses has been shown to require repeated infections. While many studies have focused on the complex nature of these responses against the antigenically diverse parasite, few have addressed the effect of malaria infection on the generation of memory B cell responses. A study of children in areas of high seasonal malaria transmission revealed a delay in malaria-specific MBC generation despite continual exposure to the parasite. In contrast, in a low transmission setting, lasting memory B cell responses were detected in adults following a single exposure to the parasite. These data indicate clinical malaria infections may hinder the generation and maintenance of malaria-specific memory B cell populations. Long-lived populations of B cells, including memory B cells and long-lived plasma cells, are generated during the germinal centre (GC) reaction in secondary lymphoid organs, such as the spleen. In support of the notion that clinical malaria episodes hinder the induction of humoral memory, histological studies revealed that human fatal malaria infections are accompanied by dramatic changes in splenic architecture, including impaired GC formation. The bulk of studies examining the induction of GC responses following malaria infection have made use of self-resolving infection models in mice. To specifically address the impact of severe malaria infections on these processes, the development of GC responses was assessed using the P. berghei ANKA model of severe malaria in comparison to immunisation with an equivalent antigenic load of attenuated parasites. This model permitted the uncoupling of the effects of severe malaria infection and parasite exposure, and demonstrated that severe malaria infections profoundly impede the correct generation of GC structures. Further, compared to immunised control animals, infected animals had reduced numbers of GC B cells. Critically, the excessive inflammatory processes caused by severe malaria infection directly impaired T follicular helper cell differentiation and lead to the preferential accumulation of Tfh precursors. As a consequence of impaired GC induction, memory responses were not efficiently generated following severe malaria. Collectively, the data presented in this thesis demonstrate a novel role for inflammation in the control of Tfh and GC responses and provide valuable insight into the mechanisms underlying inefficient B cell responses following clinical malaria infections in humans
    • 

    corecore