86 research outputs found

    Obscuration in the Host Galaxies of Soft X-ray Selected Seyferts

    Full text link
    We define a new sample of 96 low-redshift (z<0.1), soft X-ray selected Seyferts from the catalog of the Einstein Slew Survey (Elvis etal. 1992, Plummer et al. 1994). We probe the geometry and column depth of obscuring material in the host-galaxy disks using galaxian axial ratios determined mainly from the Digitized Sky Survey. The distribution of host-galaxy axial ratios clearly shows a bias against edge-on spirals, confirming the existence of a geometrically thick layer of obscuring material in the host-galaxy planes. Soft X-ray selection recovers some of the edge-on objects missed in UV and visible surveys but still results in 30% incompleteness for Type 1's. We speculate that thick rings of obscuring material like the ones we infer for these Seyferts might be commonly present in early type spirals, sitting at the Inner Lindblad Resonances of the nonaxisymmetric potentials of the host galaxies.Comment: 14 pages including 2 tables and 3 eps figures, aas2pp4.sty, to appear in Ap

    Thermal Emission as a Test for Hidden Nuclei in Nearby Radio Galaxies

    Full text link
    The clear sign of a hidden quasar inside a radio galaxy is the appearance of quasar spectral features in its polarized (scattered) light. However that observational test requires suitably placed scattering material to act as a mirror, allowing us to see the nuclear light. A rather robust and more general test for a hidden quasar is to look for the predicted high mid-IR luminosity from the nuclear obscuring matter. The nuclear waste heat is detected and well isolated in the nearest narrow line radio galaxy, Cen A. This confirms other indications that Cen A does contain a modest quasar-like nucleus. However we show here that M87 does not: at high spatial resolution, the mid-IR nucleus is seen to be very weak, and consistent with simple synchrotron emission from the base of the radio jet. This fairly robustly establishes that there are "real" narrow line radio galaxies, without the putative accretion power, and with essentially all the luminosity in kinetic form. Next we show the intriguing mid-IR morphology of Cygnus A, reported previously by us and later discussed in detail by Radomski et al. (2002). All of this mid-IR emission is consistent with reprocessing by a hidden quasar, known to exist from spectropolarimetry by Ogle et al. (1997) and other evidence.Comment: 21 pages, 5 figure

    Expansion history and f(R) modified gravity

    Get PDF
    We attempt to fit cosmological data using f(R)f(R) modified Lagrangians containing inverse powers of the Ricci scalar varied with respect to the metric. While we can fit the supernova data well, we confirm the at1/2a\propto t^{1/2} behaviour at medium to high redshifts reported elsewhere and argue that the easiest way to show that this class of models are inconsistent with the data is by considering the thickness of the last scattering surface. For the best fit parameters to the supernova data, the simplest 1/R model gives rise to a last scattering surface of thickness Δz530\Delta z\sim 530, inconsistent with observations.Comment: accepted in JCAP, presentation clarified, results and conclusions unchange

    H2O line mapping at high spatial and spectral resolution - Herschel observations of the VLA1623 outflow

    Get PDF
    Apart from being an important coolant, H2O is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the H2O emitting gas, however, are not fully understood yet. We aim to determine the abundance and distribution of H2O, its kinematics and the physical conditions of the gas responsible for the H2O emission. The observed line profile shapes help us understand the dynamics in molecular outflows. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The H2O emission originates in a region where temperatures are comparable to that of the warm H2 gas (T\gtrsim200K). Thus, the H2O emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The H2O column densities at the CO peak positions are low, i.e. N(H2O) \simeq (0.03-10)x10e14 cm-2. The H2O abundance with respect to H2 in the extended outflow is estimated at X(H2O)<1x10e-6, significantly lower than what would be expected from most recent shock models. The H2O emission traces a gas component moving at relatively high velocity compared to the low-J CO emitting gas. However, other dynamical quantities such as the momentum rate, energy and mechanical luminosity are estimated to be the same, independent of the molecular tracer used, CO or H2O.Comment: 14 pages, 13 figures, 4 table

    Ellipsoidal universe in the brane world

    Full text link
    We study a scenario of the ellipsoidal universe in the brane world cosmology with a cosmological constant in the bulk . From the five-dimensional Einstein equations we derive the evolution equations for the eccentricity and the scale factor of the universe, which are coupled to each other. It is found that if the anisotropy of our universe is originated from a uniform magnetic field inside the brane, the eccentricity decays faster in the bulk in comparison with a four-dimensional ellipsoidal universe. We also investigate the ellipsoidal universe in the brane-induced gravity and find the evolution equation for the eccentricity which has a contribution determined by the four- and five-dimensional Newton's constants. The role of the eccentricity is discussed in explaining the quadrupole problem of the cosmic microwave background.Comment: 15 pages, 1 figure, Version 3, references added, contents expande

    Lorentz Invariance Violation induced time delays in GRBs in different cosmological models

    Full text link
    Lorentz Invariance Violation (LIV) manifesting itself by energy dependent modification of standard relativistic dispersion relation has recently attracted a considerable attention. Ellis et al. previously investigated the energy dependent time offsets in different energy bands on a sample of gamma ray bursts and, assuming standard cosmological model, they found a weak indication for redshift dependence of time delays suggestive of LIV. Going beyond the Λ\LambdaCDM cosmology we extend this analysis considering also four alternative models of dark energy (quintessence with constant and variable equation of state, Chaplygin gas and brane-world cosmology). It turns out that the effect noticed by Ellis et al. is also present in those models and is the strongest for quintessence with variable equation of state.Comment: 14 pages, 1 figur

    On model selection forecasting, Dark Energy and modified gravity

    Get PDF
    The Fisher matrix approach (Fisher 1935) allows one to calculate in advance how well a given experiment will be able to estimate model parameters, and has been an invaluable tool in experimental design. In the same spirit, we present here a method to predict how well a given experiment can distinguish between different models, regardless of their parameters. From a Bayesian viewpoint, this involves computation of the Bayesian evidence. In this paper, we generalise the Fisher matrix approach from the context of parameter fitting to that of model testing, and show how the expected evidence can be computed under the same simplifying assumption of a gaussian likelihood as the Fisher matrix approach for parameter estimation. With this `Laplace approximation' all that is needed to compute the expected evidence is the Fisher matrix itself. We illustrate the method with a study of how well upcoming and planned experiments should perform at distinguishing between Dark Energy models and modified gravity theories. In particular we consider the combination of 3D weak lensing, for which planned and proposed wide-field multi-band imaging surveys will provide suitable data, and probes of the expansion history of the Universe, such as proposed supernova and baryonic acoustic oscillations surveys. We find that proposed large-scale weak lensing surveys from space should be able readily to distinguish General Relativity from modified gravity models.Comment: 6 pages, 2 figure

    Cosmological perturbations in Palatini modified gravity

    Full text link
    Two approaches to the study of cosmological density perturbations in modified theories of Palatini gravity have recently been discussed. These utilise, respectively, a generalisation of Birkhoff's theorem and a direct linearization of the gravitational field equations. In this paper these approaches are compared and contrasted. The general form of the gravitational lagrangian for which the two frameworks yield identical results in the long-wavelength limit is derived. This class of models includes the case where the lagrangian is a power-law of the Ricci curvature scalar. The evolution of density perturbations in theories of the type f(R)=Rc/Rbf(R)=R-c /R^ b is investigated numerically. It is found that the results obtained by the two methods are in good agreement on sufficiently large scales when the values of the parameters (b,c) are consistent with current observational constraints. However, this agreement becomes progressively poorer for models that differ significantly from the standard concordance model and as smaller scales are considered

    Searching for chameleon-like scalar fields with the ammonia method

    Full text link
    (Abridged) The ammonia method, which has been proposed to explore the electron-to-proton mass ratio, mu = m_e/m_p, is applied to nearby dark clouds in the Milky Way. This ratio, which is measured in different physical environments of high (terrestrial) and low (interstellar) densities of baryonic matter is supposed to vary in chameleon-like scalar field models, which predict strong dependence of both masses and coupling constant on the local matter density. High resolution spectral observations of molecular cores in lines of NH3 (J,K) = (1,1), HC3N J = 2-1, and N2H+ J = 1-0 were performed at three radio telescopes to measure the radial velocity offsets, DeltaV = V_rot - V_inv, between the inversion transition of NH3 (1,1) and the rotational transitions of other molecules with different sensitivities to the parameter dmm = (mu_obs - mu_lab)/mu_lab. The measured values of DeltaV exhibit a statistically significant velocity offset of 23 +/- 4_stat +/- 3_sys m/s. When interpreted in terms of the electron-to-proton mass ratio variation, this infers that dmm = (2.2 +/- 0.4_stat +/- 0.3_sys)x10^{-8}. If only a conservative upper bound is considered, then the maximum offset between ammonia and the other molecules is |DeltaV| <= 30 m/s. This gives the most accurate reference point at z = 0 for dmm: |dmm| <= 3x10^{-8}.Comment: 23 pages, 11 figures, 6 tables. Accepted for publication in A&A. Title and text corrected, references update

    Cosmological constraints combining H(z), CMB shift and SNIa observational data

    Full text link
    Recently H(z) data obtained from differential ages of galaxies have been proposed as a new geometrical probe of dark energy. In this paper we use those data, combined with other background tests (CMB shift and SNIa data), to constrain a set of general relativistic dark energy models together with some other models motivated by extra dimensions. Our analysis rests mostly on Bayesian statistics, and we conclude that LCDM is at least substantially favoured, and that braneworld models are less favoured than general relativistic ones.Comment: 17 pages, 11 figures; improved discussion, new figures, updated to match published versio
    corecore