216 research outputs found

    Risk of Childhood Cancers Associated with Residence in Agriculturally Intense Areas in the United States

    Get PDF
    Background: The potential for widespread exposure to agricultural pesticides through drift during application raises concerns about possible health effects to exposed children living in areas of high agricultural activity. Objectives: We evaluated whether residence in a county with greater agricultural activity was associated with risk of developing cancer in children \u3c 15 years of age. Methods: Incidence data for U.S. children 0–14 years of age diagnosed with cancer between 1995 and 2001 were provided by member registries of the North American Association of Central Cancer Registries. We determined percent cropland for each county using agricultural census data, and used the overall study distribution to classify agriculturally intense counties. We estimated odds ratios and 95% confidence intervals for all ages and 5-year age groups for total cancers and selected cancer sites using logistic regression. Results: Our study results showed statistically significant increased risk estimates for many types of childhood cancers associated with residence at diagnosis in counties having a moderate to high level of agricultural activity, with a remarkably consistent dose–response effect seen for counties having ≥ 60% of the total county acreage devoted to farming. Risk for different cancers varied by type of crop. Conclusions: Although interpretation is limited by the ecologic design, in this study we were able to evaluate rarer childhood cancers across a diverse agricultural topography. The findings of this exploratory study support a continued interest in the possible impact of long-term, low-level pesticide exposure in communities located in agriculturally intense areas

    Perioperative mortality after hemiarthroplasty related to fixation method: A study based on the Australian Orthopaedic Association National Joint Replacement Registry

    Get PDF
    Background and purpose: The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality.----- ----- Methods: We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type.----- ----- Results: Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point.----- ----- Interpretation: This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip

    Positive Affect Predicts Cerebral Glucose Metabolism in Late Middle-aged Adults.

    Get PDF
    Positive affect is associated with a number of health benefits; however, few studies have examined the relationship between positive affect and cerebral glucose metabolism, a key energy source for neuronal function and a possible index of brain health. We sought to determine if positive affect was associated with cerebral glucose metabolism in late middle-aged adults (n = 133). Participants completed the positive affect subscale of the Center for Epidemiological Studies Depression Scale at two time points over a two-year period and underwent 18F-fluorodeoxyglucose-positron emission tomography scanning. After controlling for age, sex, perceived health status, depressive symptoms, anti-depressant use, family history of Alzheimer’s disease, APOE ε4 status and interval between visits, positive affect was associated with greater cerebral glucose metabolism across para-/limbic, frontal, temporal and parietal regions. Our findings provide evidence that positive affect in late midlife is associated with greater brain health in regions involved in affective processing and also known to be susceptible to early neuropathological processes. The current findings may have implications for interventions aimed at increasing positive affect to attenuate early neuropathological changes in at-risk individuals

    The role of place branding and image in the development of sectoral clusters: the case of Dubai

    Get PDF
    This paper contextualizes how place branding and image influence the development of Dubai’s key sectoral clusters, including the key determinants of growth and success under the impression of Porter’s cluster theory. The approach is exploratory and of a qualitative inductive nature. Data was collected through conducting 21 semi-structured interviews with Dubai’s marketing/communication managers and stakeholders. Findings suggest that Dubai’s traditional clusters, namely, trading, tourism and logistics that have strong place branding and image show strong signs of success owing to Dubai’s geographical location (i.e., physical conditions). Among the new clusters, the financial sector is also benefitting from place branding. The results suggest that the success of traditional clusters have a positive spill over effect on the new clusters, in particular on construction and real estate. For policy makers it is worth to note that the recent success of the financial services cluster in Dubai will have positive impact on both, the traditional as well new clusters. The marketing and brand communication managers must consider the correlation and interplay of strength of activities amongst trading, tourism and logistics clusters and its implication while undertaking place branding for clients in their sector

    Causes of genome instability: the effect of low dose chemical exposures in modern society.

    Get PDF
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    The Confrontation between General Relativity and Experiment

    Get PDF
    The status of experimental tests of general relativity and of theoretical frameworks for analysing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article originally published in 2001; final published version incorporating referees' suggestion

    Nuclear astrophysics: the unfinished quest for the origin of the elements

    Get PDF
    Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in Physics" (version with low-resolution figures

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore