43 research outputs found

    Jumping to conclusions, general intelligence, and psychosis liability: findings from the multi-centre EU-GEI case-control study.

    Get PDF
    BACKGROUND: The 'jumping to conclusions' (JTC) bias is associated with both psychosis and general cognition but their relationship is unclear. In this study, we set out to clarify the relationship between the JTC bias, IQ, psychosis and polygenic liability to schizophrenia and IQ. METHODS: A total of 817 first episode psychosis patients and 1294 population-based controls completed assessments of general intelligence (IQ), and JTC, and provided blood or saliva samples from which we extracted DNA and computed polygenic risk scores for IQ and schizophrenia. RESULTS: The estimated proportion of the total effect of case/control differences on JTC mediated by IQ was 79%. Schizophrenia polygenic risk score was non-significantly associated with a higher number of beads drawn (B = 0.47, 95% CI -0.21 to 1.16, p = 0.17); whereas IQ PRS (B = 0.51, 95% CI 0.25-0.76, p < 0.001) significantly predicted the number of beads drawn, and was thus associated with reduced JTC bias. The JTC was more strongly associated with the higher level of psychotic-like experiences (PLEs) in controls, including after controlling for IQ (B = -1.7, 95% CI -2.8 to -0.5, p = 0.006), but did not relate to delusions in patients. CONCLUSIONS: Our findings suggest that the JTC reasoning bias in psychosis might not be a specific cognitive deficit but rather a manifestation or consequence, of general cognitive impairment. Whereas, in the general population, the JTC bias is related to PLEs, independent of IQ. The work has the potential to inform interventions targeting cognitive biases in early psychosis.EU HEALTH-F2-2009-24190

    Facial Emotion Recognition in Psychosis and Associations With Polygenic Risk for Schizophrenia: Findings From the Multi-Center EU-GEI Case-Control Study

    Get PDF
    BACKGROUND AND HYPOTHESIS: Facial Emotion Recognition is a key domain of social cognition associated with psychotic disorders as a candidate intermediate phenotype. In this study, we set out to investigate global and specific facial emotion recognition deficits in first-episode psychosis, and whether polygenic liability to psychotic disorders is associated with facial emotion recognition. STUDY DESIGN: 828 First Episode Psychosis (FEP) patients and 1308 population-based controls completed assessments of the Degraded Facial Affect Recognition Task (DFAR) and a subsample of 524 FEP and 899 controls provided blood or saliva samples from which we extracted DNA, performed genotyping and computed polygenic risk scores for schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MD). STUDY RESULTS: A worse ability to globally recognize facial emotion expressions was found in patients compared with controls [B= -1.5 (0.6), 95% CI -2.7 to -0.3], with evidence for stronger effects on negative emotions (fear [B = -3.3 (1.1), 95% CI -5.3 to -1.2] and anger [B = -2.3 (1.1), 95% CI -4.6 to -0.1]) than on happiness [B = 0.3 (0.7), 95% CI -1 to 1.7]. Pooling all participants, and controlling for confounds including case/control status, facial anger recognition was associated significantly with Schizophrenia Polygenic Risk Score (SZ PRS) [B = -3.5 (1.7), 95% CI -6.9 to -0.2]. CONCLUSIONS: Psychosis is associated with impaired recognition of fear and anger, and higher SZ PRS is associated with worse facial anger recognition. Our findings provide evidence that facial emotion recognition of anger might play a role as an intermediate phenotype for psychosis

    Transdiagnostic dimensions of psychopathology at first episode psychosis: findings from the multinational EU-GEI study.

    Get PDF
    BACKGROUND: The value of the nosological distinction between non-affective and affective psychosis has frequently been challenged. We aimed to investigate the transdiagnostic dimensional structure and associated characteristics of psychopathology at First Episode Psychosis (FEP). Regardless of diagnostic categories, we expected that positive symptoms occurred more frequently in ethnic minority groups and in more densely populated environments, and that negative symptoms were associated with indices of neurodevelopmental impairment. METHOD: This study included 2182 FEP individuals recruited across six countries, as part of the EUropean network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) study. Symptom ratings were analysed using multidimensional item response modelling in Mplus to estimate five theory-based models of psychosis. We used multiple regression models to examine demographic and context factors associated with symptom dimensions. RESULTS: A bifactor model, composed of one general factor and five specific dimensions of positive, negative, disorganization, manic and depressive symptoms, best-represented associations among ratings of psychotic symptoms. Positive symptoms were more common in ethnic minority groups. Urbanicity was associated with a higher score on the general factor. Men presented with more negative and less depressive symptoms than women. Early age-at-first-contact with psychiatric services was associated with higher scores on negative, disorganized, and manic symptom dimensions. CONCLUSIONS: Our results suggest that the bifactor model of psychopathology holds across diagnostic categories of non-affective and affective psychosis at FEP, and demographic and context determinants map onto general and specific symptom dimensions. These findings have implications for tailoring symptom-specific treatments and inform research into the mood-psychosis spectrum

    Daily use of high-potency cannabis is associated with more positive symptoms in first-episode psychosis patients: the EU-GEI case-control study.

    Get PDF
    BACKGROUND: Daily use of high-potency cannabis has been reported to carry a high risk for developing a psychotic disorder. However, the evidence is mixed on whether any pattern of cannabis use is associated with a particular symptomatology in first-episode psychosis (FEP) patients. METHOD: We analysed data from 901 FEP patients and 1235 controls recruited across six countries, as part of the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) study. We used item response modelling to estimate two bifactor models, which included general and specific dimensions of psychotic symptoms in patients and psychotic experiences in controls. The associations between these dimensions and cannabis use were evaluated using linear mixed-effects models analyses. RESULTS: In patients, there was a linear relationship between the positive symptom dimension and the extent of lifetime exposure to cannabis, with daily users of high-potency cannabis having the highest score (B = 0.35; 95% CI 0.14-0.56). Moreover, negative symptoms were more common among patients who never used cannabis compared with those with any pattern of use (B = -0.22; 95% CI -0.37 to -0.07). In controls, psychotic experiences were associated with current use of cannabis but not with the extent of lifetime use. Neither patients nor controls presented differences in depressive dimension related to cannabis use. CONCLUSIONS: Our findings provide the first large-scale evidence that FEP patients with a history of daily use of high-potency cannabis present with more positive and less negative symptoms, compared with those who never used cannabis or used low-potency types.The work was supported by: Clinician Scientist Medical Research Council fellowship (project reference MR/M008436/1) to MDF; the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South London at King's College Hospital NHS Foundation Trust to DQ; DFG Heisenberg professorship (no. 389624707) to UR. National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. The EU-GEI Project is funded by the European Community’s Seventh Framework Programme under grant agreement No. HEALTH-F2-2010-241909 (Project EU-GEI). The Brazilian study was funded by the São Paulo Research Foundation under grant number 2012/0417-0

    Psychosis Endophenotypes: A Gene-Set-Specific Polygenic Risk Score Analysis

    Get PDF
    BACKGROUND AND HYPOTHESIS: Endophenotypes can help to bridge the gap between psychosis and its genetic predispositions, but their underlying mechanisms remain largely unknown. This study aims to identify biological mechanisms that are relevant to the endophenotypes for psychosis, by partitioning polygenic risk scores into specific gene sets and testing their associations with endophenotypes. STUDY DESIGN: We computed polygenic risk scores for schizophrenia and bipolar disorder restricted to brain-related gene sets retrieved from public databases and previous publications. Three hundred and seventy-eight gene-set-specific polygenic risk scores were generated for 4506 participants. Seven endophenotypes were also measured in the sample. Linear mixed-effects models were fitted to test associations between each endophenotype and each gene-set-specific polygenic risk score. STUDY RESULTS: After correction for multiple testing, we found that a reduced P300 amplitude was associated with a higher schizophrenia polygenic risk score of the forebrain regionalization gene set (mean difference per SD increase in the polygenic risk score: -1.15 µV; 95% CI: -1.70 to -0.59 µV; P = 6 × 10-5). The schizophrenia polygenic risk score of forebrain regionalization also explained more variance of the P300 amplitude (R2 = 0.032) than other polygenic risk scores, including the genome-wide polygenic risk scores. CONCLUSIONS: Our finding on reduced P300 amplitudes suggests that certain genetic variants alter early brain development thereby increasing schizophrenia risk years later. Gene-set-specific polygenic risk scores are a useful tool to elucidate biological mechanisms of psychosis and endophenotypes, offering leads for experimental validation in cellular and animal models

    Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings.

    Get PDF
    Important questions remain about the profile of cognitive impairment in psychotic disorders across adulthood and illness stages. The age-associated profile of familial impairments also remains unclear, as well as the effect of factors, such as symptoms, functioning, and medication. Using cross-sectional data from the EU-GEI and GROUP studies, comprising 8455 participants aged 18 to 65, we examined cognitive functioning across adulthood in patients with psychotic disorders (n = 2883), and their unaffected siblings (n = 2271), compared to controls (n = 3301). An abbreviated WAIS-III measured verbal knowledge, working memory, visuospatial processing, processing speed, and IQ. Patients showed medium to large deficits across all functions (ES range = -0.45 to -0.73, p < 0.001), while siblings showed small deficits on IQ, verbal knowledge, and working memory (ES = -0.14 to -0.33, p < 0.001). Magnitude of impairment was not associated with participant age, such that the size of impairment in older and younger patients did not significantly differ. However, first-episode patients performed worse than prodromal patients (ES range = -0.88 to -0.60, p < 0.001). Adjusting for cannabis use, symptom severity, and global functioning attenuated impairments in siblings, while deficits in patients remained statistically significant, albeit reduced by half (ES range = -0.13 to -0.38, p < 0.01). Antipsychotic medication also accounted for around half of the impairment in patients (ES range = -0.21 to -0.43, p < 0.01). Deficits in verbal knowledge, and working memory may specifically index familial, i.e., shared genetic and/or shared environmental, liability for psychotic disorders. Nevertheless, potentially modifiable illness-related factors account for a significant portion of the cognitive impairment in psychotic disorders.The European Community’s Seventh Framework Programme under grant agreement No. HEALTH-F2-2010-241909 (EU-GEI)

    Synergistic effects of childhood adversity and polygenic risk in first-episode psychosis: the EU-GEI study

    Get PDF
    Background A history of childhood adversity is associated with psychotic disorder, with an increase in risk according to the number of exposures. However, it is not known why only some exposed individuals go on to develop psychosis. One possibility is pre-existing polygenic vulnerability. Here, we investigated, in the largest sample of first-episode psychosis (FEP) cases to date, whether childhood adversity and high polygenic risk scores for schizophrenia (SZ-PRS) combine synergistically to increase the risk of psychosis, over and above the effect of each alone. Methods We assigned a schizophrenia-polygenic risk score (SZ-PRS), calculated from the Psychiatric Genomics Consortium (PGC2), to all participants in a sample of 384 FEP patients and 690 controls from the case–control component of the EU-GEI study. Only participants of European ancestry were included in the study. A history of childhood adversity was collected using the Childhood Trauma Questionnaire (CTQ). Synergistic effects were estimated using the interaction contrast ratio (ICR) [odds ratio (OR)exposure and PRS − ORexposure − ORPRS + 1] with adjustment for potential confounders. Results There was some evidence that the combined effect of childhood adversities and polygenic risk was greater than the sum of each alone, as indicated by an ICR greater than zero [i.e. ICR 1.28, 95% confidence interval (CI) −1.29 to 3.85]. Examining subtypes of childhood adversities, the strongest synergetic effect was observed for physical abuse (ICR 6.25, 95% CI −6.25 to 20.88). Conclusions Our findings suggest possible synergistic effects of genetic liability and childhood adversity experiences in the onset of FEP, but larger samples are needed to increase precision of estimates

    Rare copy number variation in posttraumatic stress disorder

    Get PDF
    Posttraumatic stress disorder (PTSD) is a heritable (h2 = 24-71%) psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that has been implicated in the etiology of psychiatric disorders, but no large-scale investigation of CNV in PTSD has been performed. We present an association study of CNV burden and PTSD symptoms in a sample of 114,383 participants (13,036 cases and 101,347 controls) of European ancestry. CNVs were called using two calling algorithms and intersected to a consensus set. Quality control was performed to remove strong outlier samples. CNVs were examined for association with PTSD within each cohort using linear or logistic regression analysis adjusted for population structure and CNV quality metrics, then inverse variance weighted meta-analyzed across cohorts. We examined the genome-wide total span of CNVs, enrichment of CNVs within specified gene-sets, and CNVs overlapping individual genes and implicated neurodevelopmental regions. The total distance covered by deletions crossing over known neurodevelopmental CNV regions was significant (beta = 0.029, SE = 0.005, P = 6.3 × 10-8). The genome-wide neurodevelopmental CNV burden identified explains 0.034% of the variation in PTSD symptoms. The 15q11.2 BP1-BP2 microdeletion region was significantly associated with PTSD (beta = 0.0206, SE = 0.0056, P = 0.0002). No individual significant genes interrupted by CNV were identified. 22 gene pathways related to the function of the nervous system and brain were significant in pathway analysis (FDR q < 0.05), but these associations were not significant once NDD regions were removed. A larger sample size, better detection methods, and annotated resources of CNV are needed to explore this relationship further

    The East Flanders Prospective Twin Survey (EFPTS): 55 Years Later

    No full text
    The East Flanders Prospective Twin Survey (EFPTS) is a registry of multiple births in the province of East Flanders, Belgium. Since its start in 1964, over 10,000 twin-pairs have been registered. EFPTS has several unique features: it is population-based and prospective, with the possibility of long-term follow-up; the twins (and higher order multiple births) are recruited at birth; basic perinatal data are recorded; chorion type and zygosity are established; since 1969, placental biopsies have been taken and frozen at -20°C for future research. Since its origin, the EFPTS has included placental data and allows differentiation of three subtypes of monozygotic twins based on the time of the initial zygotic division: the dichorionic-diamniotic pairs (early, with splitting before the fourth day after fertilization), the monochorionic-diamniotic pairs (intermediate, splitting between the fourth- and the seventh-day postfertilization) and the monochorionic-monoamniotic pairs (late, splitting after the eighth day postfertilization). Studies can be initiated taking into account primary biases, those originating 'in utero'. Such studies could throw new light on the consequences of early embryological events and the gene-environment interactions as far as periconceptional and intrauterine environment are concerned.status: publishe

    Transcranial Magnetic Stimulation-Induced Plasticity Mechanisms: TMS-Related Gene Expression and Morphology Changes in a Human Neuron-Like Cell Model

    Full text link
    Transcranial Magnetic Stimulation (TMS) is a form of non-invasive brain stimulation, used to alter cortical excitability both in research and clinical applications. The intermittent and continuous Theta Burst Stimulation (iTBS and cTBS) protocols have been shown to induce opposite after-effects on human cortex excitability. Animal studies have implicated synaptic plasticity mechanisms long-term potentiation (LTP, for iTBS) and depression (LTD, for cTBS). However, the neural basis of TMS effects has not yet been studied in human neuronal cells, in particular at the level of gene expression and synaptogenesis. To investigate responses to TBS in living human neurons, we differentiated human SH-SY5Y cells toward a mature neural phenotype, and stimulated them with iTBS, cTBS, or sham (placebo) TBS. Changes in (a) mRNA expression of a set of target genes (previously associated with synaptic plasticity), and (b) morphological parameters of neurite outgrowth following TBS were quantified. We found no general effects of stimulation condition or time on gene expression, though we did observe a significantly enhanced expression of plasticity genes NTRK2 and MAPK9 24 h after iTBS as compared to sham TBS. This specific effect provides unique support for the widely assumed plasticity mechanisms underlying iTBS effects on human cortex excitability. In addition to this protocol-specific increase in plasticity gene expression 24 h after iTBS stimulation, we establish the feasibility of stimulating living human neuron with TBS, and the importance of moving to more complex human in vitro models to understand the underlying plasticity mechanisms of TBS stimulation
    corecore