594 research outputs found

    Evaluation of the effects of erythritol on gene expression in Brucella abortus

    Get PDF
    Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol

    Small-Group Learning in an Upper-Level University Biology Class Enhances Academic Performance and Student Attitudes Toward Group Work

    Get PDF
    To improve science learning, science educators' teaching tools need to address two major criteria: teaching practice should mirror our current understanding of the learning process; and science teaching should reflect scientific practice. We designed a small-group learning (SGL) model for a fourth year university neurobiology course using these criteria and studied student achievement and attitude in five course sections encompassing the transition from individual work-based to SGL course design. All students completed daily quizzes/assignments involving analysis of scientific data and the development of scientific models. Students in individual work-based (Individualistic) sections usually worked independently on these assignments, whereas SGL students completed assignments in permanent groups of six. SGL students had significantly higher final exam grades than Individualistic students. The transition to the SGL model was marked by a notable increase in 10th percentile exam grade (Individualistic: 47.5%; Initial SGL: 60%; Refined SGL: 65%), suggesting SGL enhanced achievement among the least prepared students. We also studied student achievement on paired quizzes: quizzes were first completed individually and submitted, and then completed as a group and submitted. The group quiz grade was higher than the individual quiz grade of the highest achiever in each group over the term. All students – even term high achievers –could benefit from the SGL environment. Additionally, entrance and exit surveys demonstrated student attitudes toward SGL were more positive at the end of the Refined SGL course. We assert that SGL is uniquely-positioned to promote effective learning in the science classroom

    Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies

    Get PDF
    The efficiency of pond and constructed wetland (CW) treatment systems, is influenced by the internal hydrodynamics and mixing interactions between water and aquatic vegetation. In order to contribute to current knowledge of how emergent real vegetation affects solute mixing, and on what the shape and size effects are on the mixing characteristics, an understanding and quantification of those physical processes and interactions was evaluated. This paper presents results from tracer tests conducted during 2015-2016 in six full-scale systems in the UK under different flow regimes, operational depths, shapes and sizes, and in-/outlet configurations. The aim is to quantify the hydraulic performance and mixing characteristics of the treatment units, and to investigate the effect of size and shape on the mixing processes. Relative comparison of outlet configuration, inflow conditions, and internal features between the six different treatment units showed variations in residence times of up to a factor of 3. A key outcome of this study, demonstrated that the width is a more important dimension for the efficiency of the unit compared to the depth. Results underlined the importance of investigating hydrodynamics and physics of flow in full-size units to enhance treatment efficiency and predictions of water quality models

    A Highly Sensitive Assay for Monitoring the Secretory Pathway and ER Stress

    Get PDF
    Background: The secretory pathway is a critical index of the capacity of cells to incorporate proteins into cellular membranes and secrete proteins into the extracellular space. Importantly it is disrupted in response to stress to the endoplasmic reticulum that can be induced by a variety of factors, including expression of mutant proteins and physiologic stress. Activation of the ER stress response is critical in the etiology of a number of diseases, such as diabetes and neurodegeneration, as well as cancer. We have developed a highly sensitive assay to monitor processing of proteins through the secretory pathway and endoplasmic reticulum (ER) stress in real-time based on the naturally secreted Gaussia luciferase (Gluc). Methodology/Principle Findings: An expression cassette for Gluc was delivered to cells, and its secretion was monitored by measuring luciferase activity in the conditioned medium. Gluc secretion was decreased down to 90% when these cells were treated with drugs that interfere with the secretory pathway at different steps. Fusing Gluc to a fluorescent protein allowed quantitation and visualization of the secretory pathway in real-time. Expression of this reporter protein did not itself elicit an ER stress response in cells; however, Gluc proved very sensitive at sensing this type of stress, which is associated with a temporary decrease in processing of proteins through the secretory pathway. The Gluc secretion assay was over 20,000-fold more sensitive as compared to the secreted alkaline phosphatase (SEAP), a well established assay for monitoring of protein processing and ER stress in mammalian cells. Conclusions/Significance: The Gluc assay provides a fast, quantitative and sensitive technique to monitor the secretory pathway and ER stress and its compatibility with high throughput screening will allow discovery of drugs for treatment of conditions in which the ER stress is generally induced

    Substrate protein folds while it is bound to the ATP-independent chaperone Spy

    Get PDF
    Chaperones assist the folding of many proteins in the cell. While the most well studied chaperones use cycles of ATP binding and hydrolysis to assist protein folding, a number of chaperones have been identified that promote protein folding in the absence of highenergy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we have characterized the kinetic mechanism of substrate folding by the small, ATP-independent chaperone, Spy. Spy rapidly associates with its substrate, Immunity protein 7 (Im7), eliminating its potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while remaining bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones can assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while continuously bound to a chaperone

    Testing for sexually transmitted infections and blood borne viruses on admission to Western Australian prisons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prison populations are known to be at high risk of sexually transmitted infections (STIs) and blood borne viruses (BBVs). In accordance with State health guidelines, the Western Australian Department of Correctional Services' policy is to offer testing for STIs and BBVs to all new prison entrants. This audit was undertaken to assess the completeness and timeliness of STI and BBV testing among recent prison entrants in Western Australia, and estimate the prevalence of STIs and BBVs on admission to prison.</p> <p>Methods</p> <p>A retrospective audit of prison medical records was conducted among 946 individuals admitted to prison in Western Australia after the 1<sup>st </sup>January 2005, and discharged between the 1<sup>st </sup>January and 31<sup>st </sup>December 2007 inclusive. Quota sampling was used to ensure adequate sampling of females, juveniles, and individuals from regional prisons. Main outcomes of interest were the proportion of prisoners undergoing STI and BBV testing, and the prevalence of STIs and BBVs.</p> <p>Results</p> <p>Approximately half the sample underwent testing for the STIs chlamydia and gonorrhoea, and almost 40% underwent testing for at least one BBV. Completeness of chlamydia and gonorrhoea testing was significantly higher among juveniles (84.1%) compared with adults (39.8%; p < 0.001), and Aboriginal prisoners (58.3%) compared with non-Aboriginal prisoners (40.4%; p < 0.001). Completeness of BBV testing was significantly higher among adults (46.5%) compared with juveniles (15.8%; p < 0.001) and males (43.3%) compared with females (33.1%; p = 0.001). Among prisoners who underwent testing, 7.3% had a positive chlamydia test result and 24.8% had a positive hepatitis C test result.</p> <p>Conclusion</p> <p>The documented coverage of STI and BBV testing among prisoners in Western Australia is not comprehensive, and varies significantly by age, gender and Aboriginality. Given the high prevalence of STIs and BBVs among prisoners, increased test coverage is required to ensure optimal use of the opportunity that prison admission presents for the treatment and control of STIs and BBVs among this high risk group.</p

    Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation

    Get PDF
    Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore