85 research outputs found

    Butcher & Oemler Cluster A2111: A Head-on Merger at z = 0.23

    Full text link
    We present ROSAT PSPC and HRI observations of A2111, the richest galaxy cluster photometrically surveyed by Butcher & Oemler (1984). The cluster contains a distinct comet-shaped X-ray subcomponent, which appears hotter than the rest of the cluster. The galaxy and X-ray surface brightness distributions of the cluster show a similarly elongated morphology. These results suggest that the cluster is undergoing a head-on subcluster merger. This merger may also be responsible for the high fraction of gas-rich blue galaxies observed in the cluster. We have further detected a poor cluster along the merging axis and at a projected distance of about 5 Mpc from A2111.Comment: To be published in MNRAS, 16 pages, plus 13 figures in the GIF or jpeg format (uuencoded). Black & white postscript files of the figures are available at http://www.astro.nwu.edu/astro/wqd/paper/a2111

    Probing the Evolution of the Galaxy Interaction/Merger Rate Using Collisional Ring Galaxies

    Full text link
    We present the results from our program to determine the evolution of the galaxy interaction/merger rate with redshift using the unique star-forming characteristics of collisional ring galaxies. We have identified 25 distant collisional ring galaxy candidates (CRGCs) in a total of 162 deep Hubble Space Telescope Wide Field/Planetary Camera-2 images obtained from the HST Archives. Based on measured and estimated redshifts, these 25 CRGCs all lie in the redshift interval of 0.1 < z < 1. Using the local collisional ring galaxy volume density and the new ``standard'' cosmology, we find that in order to account for the number of identified CRGCs in our surveyed fields, the galaxy interaction/merger rate, parameterized as (1 + z)^m, must increase steeply with redshift.We determine a minimum value of m = 5.2 ±\pm 0.7, though m could be as high as 7 or 8. We can rule out a non-evolving (m = 0) and weakly evolving (m = 1-2) galaxy interaction/merger rate at greater than the 4 sigma level of confidence.Comment: Accepted in the Astrophysical Journal (11 pages, 4 figures). Higher resolution version of the figures is available at http://www.astro.cornell.edu/~vassilis/papers

    Global dataset of soil organic carbon in tidal marshes

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Global dataset of soil organic carbon in tidal marshes.

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    • 

    corecore