24 research outputs found

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: results from the Global Burden of Disease Study 2019

    Get PDF
    Background Tuberculosis is a major contributor to the global burden of disease, causing more than a million deaths annually. Given an emphasis on equity in access to diagnosis and treatment of tuberculosis in global health targets, evaluations of differences in tuberculosis burden by sex are crucial. We aimed to assess the levels and trends of the global burden of tuberculosis, with an emphasis on investigating differences in sex by HIV status for 204 countries and territories from 1990 to 2019. Methods We used a Bayesian hierarchical Cause of Death Ensemble model (CODEm) platform to analyse 21 505 site-years of vital registration data, 705 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, and 680 site-years of mortality surveillance data to estimate mortality due to tuberculosis among HIV-negative individuals. We used a population attributable fraction approach to estimate mortality related to HIV and tuberculosis coinfection. A compartmental meta-regression tool (DisMod-MR 2.1) was then used to synthesise all available data sources, including prevalence surveys, annual case notifications, population-based tuberculin surveys, and tuberculosis cause-specific mortality, to produce estimates of incidence, prevalence, and mortality that were internally consistent. We further estimated the fraction of tuberculosis mortality that is attributable to independent effects of risk factors, including smoking, alcohol use, and diabetes, for HIV-negative individuals. For individuals with HIV and tuberculosis coinfection, we assessed mortality attributable to HIV risk factors including unsafe sex, intimate partner violence (only estimated among females), and injection drug use. We present 95% uncertainty intervals for all estimates. Findings Globally, in 2019, among HIV-negative individuals, there were 1.18 million (95% uncertainty interval 1.08-1.29) deaths due to tuberculosis and 8.50 million (7.45-9.73) incident cases of tuberculosis. Among HIV-positive individuals, there were 217 000 (153 000-279 000) deaths due to tuberculosis and 1.15 million (1.01-1.32) incident cases in 2019. More deaths and incident cases occurred in males than in females among HIV-negative individuals globally in 2019, with 342 000 (234 000-425 000) more deaths and 1.01 million (0.82-1.23) more incident cases in males than in females. Among HIV-positive individuals, 6250 (1820-11 400) more deaths and 81 100 (63 300-100 000) more incident cases occurred among females than among males in 2019. Age-standardised mortality rates among HIV-negative males were more than two times greater in 105 countries and age-standardised incidence rates were more than 1.5 times greater in 74 countries than among HIV-negative females in 2019. The fraction of global tuberculosis deaths among HIV-negative individuals attributable to alcohol use, smoking, and diabetes was 4.27 (3.69-5.02), 6.17 (5.48-7.02), and 1.17 (1.07-1.28) times higher, respectively, among males than among females in 2019. Among individuals with HIV and tuberculosis coinfection, the fraction of mortality attributable to injection drug use was 2.23 (2.03-2.44) times greater among males than females, whereas the fraction due to unsafe sex was 1.06 (1.05-1.08) times greater among females than males. Interpretation As countries refine national tuberculosis programmes and strategies to end the tuberculosis epidemic, the excess burden experienced by males is important. Interventions are needed to actively communicate, especially to men, the importance of early diagnosis and treatment. These interventions should occur in parallel with efforts to minimise excess HIV burden among women in the highest HIV burden countries that are contributing to excess HIV and tuberculosis coinfection burden for females. Placing a focus on tuberculosis burden among HIV-negative males and HIV and tuberculosis coinfection among females might help to diminish the overall burden of tuberculosis. This strategy will be crucial in reaching both equity and burden targets outlined by global health milestone

    BIOMEMBRANES 2018

    No full text

    Targeting choroidal vasculopathy via up-regulation of tRNA-derived fragment tRF-22 expression for controlling progression of myopia

    No full text
    Abstract Background Myopia has emerged as a major public health concern globally, which is tightly associated with scleral extracellular matrix (ECM) remodeling and choroidal vasculopathy. Choroidal vasculopathy has gradually been recognized as a critical trigger of myopic pathology. However, the precise mechanism controlling choroidal vasculopathy remains unclear. Transfer RNA-derived fragments (tRFs) are known as a novel class of small non-coding RNAs that plays important roles in several biological and pathological processes. In this study, we investigated the role of tRF-22-8BWS72092 (tRF-22) in choroidal vasculopathy and myopia progression. Methods The tRF-22 expression pattern under myopia-related stresses was detected by qRT-PCR. MTT assays, EdU incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of tRF-22 in choroidal endothelial cell function in vitro. Isolectin B4 staining and choroidal sprouting assay ex vivo were conducted to detect the role of tRF-22 in choroidal vascular dysfunction in vivo. Immunofluorescent staining, western blot assays and ocular biometric parameters measurement were performed to examine whether altering tRF-22 expression in choroid affects scleral hypoxia and ECM remodeling and myopia progression in vivo. Bioinformatics analysis and luciferase activity assays were conducted to identify the downstream targets of tRF-22. RNA-sequencing combined with m6A-qPCR assays were used to identify the m6A modified targets of METTL3. Gain-of-function and Loss-of-function analysis were performed to reveal the mechanism of tRF-22/METTL3-mediated choroidal vascular dysfunction. Results The results revealed that tRF-22 expression was significantly down-regulated in myopic choroid. tRF-22 overexpression alleviated choroidal vasculopathy and retarded the progression of myopia in vivo. tRF-22 regulated choroidal endothelial cell viability, proliferation, migration, and tube formation ability in vitro. Mechanistically, tRF-22 interacted with METTL3 and blocked m6A methylation of Axin1 and Arid1b mRNA transcripts, which led to increased expression of Axin1 and Arid1b. Conclusions Our study reveals that the intervention of choroidal vasculopathy via tRF-22-METTL3- Axin1/Arid1b axis is a promising strategy for the treatment of patients with myopic pathology. Graphical Abstrac

    Direct activation of β-sp3-carbons of saturated carboxylic esters as electrophilic carbons via oxidative carbene catalysis

    No full text
    An N-heterocyclic carbene-catalyzed oxidative LUMO activation of the β-cabons of saturated carboxylic esters is disclosed. This approach allows for efficient asymmetric access to lactams and lactones by directly installing functional groups to the typically inert β-sp3 carbons of saturated esters. The use of HOBt as an additive was found to significantly improve both yields and enantioselectivities of the reactions.NRF (Natl Research Foundation, S’pore)ASTAR (Agency for Sci., Tech. and Research, S’pore)MOE (Min. of Education, S’pore)Accepted versio

    Carbene-catalyzed α-carbon amination of chloroaldehydes for enantioselective access to dihydroquinoxaline derivatives

    No full text
    An NHC-catalyzed α-carbon amination of chloroaldehydes was developed. Cyclohexadiene-1,2-diimines are used as amination reagents and four-atom synthons. Our reaction affords optically enriched dihydroquinoxalines that are core structures in natural products and synthetic bioactive molecules.NRF (Natl Research Foundation, S’pore)ASTAR (Agency for Sci., Tech. and Research, S’pore)MOE (Min. of Education, S’pore)Accepted versio

    Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe<sup>3+</sup> and MR Imaging

    No full text
    Iron ion (Fe<sup>3+</sup>) which is the physiologically most abundant and versatile transition metal in biological systems, has been closely related to many certain cancers, metabolism, and dysfunction of organs, such as the liver, heart, and pancreas. In this Research Article, a novel Nile red derivative (NRD) fluorescent probe was synthesized and, in conjunction with polymer-modified core–shell upconversion nanoparticles (UCNPs), demonstrated in the detection of Fe<sup>3+</sup> ion with high sensitivity and selectivity. The core–shell UCNPs were surface modified using a synthesized PEGylated amphiphilic polymer (C<sub>18</sub>PMH-mPEG), and the resulting mPEG modified core–shell UCNPs (mPEG-UCNPs) show good water solubility. The overall Fe<sup>3+</sup>-responsive upconversion luminescence nanostructure was fabricated by linking the NRD to the mPEG-UCNPs, denoted as mPEG-UCNPs-NRD. In the nanostructure, the core–shell UCNPs, NaYF<sub>4</sub>:Yb,Er,Tm@NaGdF<sub>4</sub>, serve as the energy donor while the Fe<sup>3+</sup>-responsive NRD as the energy acceptor, which leads to efficient luminescence resonance energy transfer (LRET). The mPEG-UCNPs-NRD nanostructure shows high selectivity and sensitivity for detecting Fe<sup>3+</sup> in water. In addition, benefited from the good biocompatibility, the nanostructure was successfully applied for detecting Fe<sup>3+</sup> in living cells based on upconversion luminescence (UCL) from the UCNPs. Furthermore, the doped Gd<sup>3+</sup> ion in the UCNPs endows the mPEG-UCNPs-NRD nanostructure with effective <i>T</i><sub>1</sub> signal enhancement, making it a potential magnetic resonance imaging (MRI) contrast agent. This work demonstrates a simple yet powerful strategy to combine metal ion sensing with multimodal bioimaging based on upconversion luminescence for biomedical applications
    corecore