383 research outputs found

    Improved Limits on B0B^{0} decays to invisible (+γ)(+\gamma) final states

    Get PDF
    We establish improved upper limits on branching fractions for B0 decays to final States 10 where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million BB pairs collected at the Y(4S) resonance by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Exclusive Measurements of b -> s gamma Transition Rate and Photon Energy Spectrum

    Get PDF
    We use 429 fb1^{-1} of e+ee^+e^- collision data collected at the Υ(4S)\Upsilon(4S) resonance with the BABAR detector to measure the radiative transition rate of bsγb\rightarrow s\gamma with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be B(BˉXsγ)=(3.29±0.19±0.48)×104\mathcal{B}(\bar B \rightarrow X_{s}\gamma)=(3.29\pm 0.19\pm 0.48)\times 10^{-4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, mbm_{b} and μπ2\mu_{\pi}^{2}, in the kinetic and shape function models.Comment: 18 pages, 14 pdf figures, submitted to Phys. Rev.

    Mapping Tumor Spheroid Mechanics in Dependence of 3D Microenvironment Stiffness and Degradability by Brillouin Microscopy

    Get PDF
    Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels. We then quantitatively mapped the mechanical properties of tumor spheroids in situ using Brillouin microscopy. Maps acquired for tumor spheroids grown within stiff hydrogels showed elevated Brillouin frequency shifts (hence increased longitudinal elastic moduli) with increasing hydrogel stiffness. Maps furthermore revealed spatial variations of the mechanical properties across the spheroids’ cross-sections. When hydrogel degradability was blocked, comparable Brillouin frequency shifts of the MCF-7 spheroids were found in both compliant and stiff hydrogels, along with similar levels of growth-induced compressive stress. Under low compressive stress, single cells or free multicellular aggregates showed consistently lower Brillouin frequency shifts compared to spheroids growing within hydrogels. Thus, the spheroids’ mechanical properties were modulated by matrix stiffness and degradability as well as multicellularity, and also to the associated level of compressive stress felt by tumor spheroids. Spheroids generated from a panel of invasive breast, prostate and pancreatic cancer cell lines within degradable stiff hydrogels, showed higher Brillouin frequency shifts and less cell invasion compared to those in compliant hydrogels. Taken together, our findings contribute to a better understanding of the interplay between cancer cells and microenvironment mechanics and degradability, which is relevant to better understand cancer progression

    Structure and energetics of carbon, hexagonal boron nitride and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    Full text link
    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.Comment: 9 pages, 6 figure

    Immunoglobulins and Serotonin modulate human macrophage polarization

    Get PDF
    1 p. Annual Scientific Meeting of the European Society for Clinical Investigation Cluj-Napoca, Romania 27– 30 May 2015Peer reviewe

    Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    Get PDF
    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation of the early stage intermediates and subsequent formation of an InP cluster from separated indium and phosphorus precursors. In our simulations, indium agglomeration precedes formation of In-P bonds. We observe a predominantly intercomplex pathway in which In-P bonds form between one set of precursor copies while the carboxylate ligand of a second indium precursor in the agglomerated indium abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy pathway characterization of the AIMD-sampled reaction events confirms these observations and identifies that In-carboxylate dissociation energetics solely determine the barrier along the In-P bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the thermodynamics of the reaction. Our observations of the differing roles of precursors in controlling QD formation strongly suggests that the challenges thus far encountered in InP QD synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy that simultaneously addresses the chemistry of both indium and phosphorus precursors.Comment: 40 pages, 9 figures, submitted for publicatio

    Morehead State University 1979 Men\u27s and Women\u27s Cross Country

    Get PDF
    The 1979 official media guide for the Morehead State University men\u27s and women\u27s cross country team.https://scholarworks.moreheadstate.edu/msu_sports_programs/1230/thumbnail.jp

    Post-Occupancy Evaluation and IEQ Measurements from 64 Office Buildings: Critical Factors and Thresholds for User Satisfaction on Thermal Quality

    Get PDF
    The indoor environmental quality (IEQ) of buildings can have a strong influence on occupants’ comfort, productivity, and health. Post-occupancy evaluation (POE) is necessary in assessing the IEQ of the built environment, and it typically relies on the subjective surveys of thermal quality, air quality, visual quality, and acoustic quality. In this research, we expanded POE to include both objective IEQ measurements and the technical attributes of building systems (TABS) that may affect indoor environment and user satisfaction. The suite of three tools, including user satisfaction survey, workstation IEQ measurements, and TABS in the National Environmental Assessment Toolkit (NEAT) has been deployed in 1601 workstations in 64 office buildings, generating a rich database for statistical evaluation of possible correlations between the physical attributes of workstations, environmental conditions, and user satisfaction. Multivariate regression and multiple correlation coefficient statistical analysis revealed the relationship between measured and perceived IEQ indices, interdependencies between IEQ indices, and other satisfaction variables of significance. The results showed that overall, 55% of occupants responded as “satisfied” or “neutral”, and 45% reported being “dissatisfied” in their thermal quality. Given the dataset, air temperature in work area, size of thermal zone, window quality, level of temperature control, and radiant temperature asymmetry with façade are the critical factors for thermal quality satisfaction in the field. As a result, the outcome of this research contributes to identifying correlations between occupant satisfaction, measured data, and technical attributes of building systems. The presented integrated IEQ assessment method can further afford robust predictions of building performance against metrics and guidelines for IEQ standards to capture revised IEQ thresholds that impact building occupants’ satisfaction.</jats:p
    corecore