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ABSTRACT: Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-
dependent properties for applications from electronic devices to imaging. Indium phosphide QDs 
have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP 
QDs with the desired properties lags behind other QD materials due to a poor understanding of 
how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) 
simulations, we report the first direct observation of the early stage intermediates and subsequent 
formation of an InP cluster from separated indium and phosphorus precursors.  In our 
simulations, indium agglomeration precedes formation of In-P bonds. We observe a 
predominantly intercomplex pathway in which In-P bonds form between one set of precursor 
copies while the carboxylate ligand of a second indium precursor in the agglomerated indium 
abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster 
with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy 
pathway characterization of the AIMD-sampled reaction events confirms these observations and 
identifies that In-carboxylate dissociation energetics solely determine the barrier along the In-P 
bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 
kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the 
thermodynamics of the reaction. Our observations of the differing roles of precursors in 
controlling QD formation strongly suggests that the challenges thus far encountered in InP QD 
synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy 
that simultaneously addresses the chemistry of both indium and phosphorus precursors. 
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1. Introduction 

Colloidal semiconductor nanocrystals (quantum dots, QDs) exhibit unique size- and shape-

dependent properties that have been harnessed for applications ranging from optoelectronic and 

photovoltaic devices1-4 to bio-imaging reagents5-6. First-principles simulations have provided 

important insights into the unusual structure-property relationships of QDs.7-10 Cadmium 

selenide (CdSe)-based QDs are the most widely investigated materials and have been 

commercialized in consumer electronic products.11 However, the high toxicity of cadmium12 has 

inspired research into replacement materials that have similar electronic and optical properties, 

and indium phosphide (InP) has been identified as the most promising candidate13-16. Despite 

significant experimental effort to identify the mechanism17-24 and tune the growth process25-31 of 

InP QDs, current synthesis approaches have not yet obtained optimal InP QD size distribution, 

quantum yield and stability comparable to CdSe-based QDs32. Difficulties in optimizing InP QD 

synthesis have motivated further investigation into the QD growth process, but spectroscopic 

techniques that can be used to characterize InP clusters/QDs have not been able to identify the 

difficult-to-isolate early-stage intermediates. The most common experimental recipe22, 24 for InP 

QD synthesis involves the use of long-chain carboxylate indium precursors and various 

phosphorus precursors (Figure 1). First-principles simulations that are intrinsically limited to 

short time- and length-scales are ideally suited to shed light on the short-lived intermediates in 

the early-stage growth of InP QDs. 
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Figure 1. (a) Experimental precursors (indium myristate (In(My)3) and tris(trimethylsilyl) 

phosphine (P(SiMe3)3)), (b) model precursor analogues used in simulations (indium acetate 

(In(Ac)3), phosphine (PH3)), and (c) snapshot from example ab initio molecular dynamics 

simulation with spherical boundary depicted. Indium (brown) and phosphorus (orange) atoms are 

shown as spheres with their annotated partial charges, while other atoms (oxygen in red, silicon 

in yellow, carbon in gray, and hydrogen in white) are shown in stick representation.  

First-principles simulations have been widely employed to study primarily optoelectronic 

properties of the more established II-VI and IV-VI cadmium33-39 or lead chalcogenide10, 37, 40-42 

QDs, although there have been a few computational studies of III-V InP QDs43-46. In addition to 

structure-property investigations, binding energies to crystalline models of possible QD facets 

have been used to propose growth mechanisms of QDs.33-34, 36, 41, 47 For example, relative ligand 

binding strengths have been used to understand anisotropic growth in CdSe QDs33-34, the effect 

of surface oxidation or hydroxylation on the growth of CdSe36 and PbS41 QDs, and properties of 

facets of indium oxide nanoparticles47. While InP QDs have not been the subject of as much 

computational study, other InP materials such as nanowires48, nanotubes49, hetero-structures50 

and bulk surfaces51-53 have been investigated with first-principles techniques. Mechanisms of InP 

nanowire growth on InP crystals have been proposed54 based on relative binding energies for 

various In and P adatom configurations. Experimentally, more is known about the growth 
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mechanism of metal nanoparticles (e.g. gold), leading to considerable computational effort55-61 of 

formation reaction energetics and ligand exchange mechanisms58-61.  

The challenges in InP QD synthesis motivate the use of first-principles simulations to 

investigate early-stage growth intermediates, but, to the best of our knowledge, no such 

computational studies have been carried out thus far. The lack of experimental information about 

the nature of InP QD growth intermediates necessitates a sampling approach to first discover 

possible pathways rather than directly evaluating energetics for predefined pathways. Ab initio 

molecular dynamics (AIMD) has been widely employed as a discovery tool where mechanisms 

were not already known including, for example, the growth of carbon nanotube or graphene on 

metal nanoparticles or surfaces62-64, water splitting on InP/GaP surfaces51-53, CO oxidation on 

ceria-supported gold nanoclusters65 and water oxidation by cobalt nanoparticles66. These AIMD 

simulations are constrained to short timescales and small system sizes in order to avoid 

prohibitive computational cost. Barriers of key reaction steps must also be at or below the 

thermal energy available in the simulation to ensure sufficient sampling. Strategies that enhance 

sampling efficiency within AIMD include high-temperature acceleration67, replica exchange68, 

and metadynamics69 to name a few. Alternatively, use of multiple, lower levels of theory can 

reduce computational cost and enable accelerated discovery, for example through the use of 

reactive force fields70 or mixed quantum-mechanical/molecular mechanics techniques71. Recent 

work has also shown the possibility of discovering hundreds of new reaction pathways starting 

from a mixture of organic molecule species with AIMD sampling that is accelerated through 

high-temperature, relatively approximate first-principles methods, and variable boundary 

conditions.72  
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In order to elucidate the nature of early-stage reaction mechanisms in InP QD formation, we 

have employed variable boundary, high-temperature AIMD simulations starting from indium and 

phosphorus precursor mixtures. This approach enables us to observe the interactions and 

elementary reaction pathway steps that lead to formation of InP clusters. From these AIMD 

trajectories, we extract key reaction steps, and characterize their associated minimum energy 

pathways. Analysis of AIMD trajectories also reveals collective motions that contribute to the 

dynamic formation of an InP cluster. The outline of the paper is as follows. In section 2, we 

present the computational methods used in our study. In section 3, we present the results of our 

AIMD simulations including observation of the formation of a cluster, evaluation of intermediate 

structures, and determination of reaction pathway energetics based on AIMD trajectories. In 

section 4, we provide additional technical details into the acceleration strategies and 

approximations made in order to enable the sampling and observation of growth dynamics of InP 

QDs at reasonable computational cost. We provide our conclusions in section 5. 

2. Computational Methods 

AIMD simulations were performed with the graphical-processing unit (GPU)-accelerated 

quantum chemistry package, TeraChem73-74. Indium acetate (In(Ac)3) and phosphine (PH3) are 

used as the model indium and phosphorus precursors. A detailed discussion of the effect of 

precursor choice is presented in Sec. 4. One to seven In(Ac)3 molecules and six to thirty PH3 

molecules are used in the AIMD simulations with the ratio between In(Ac)3 and PH3 molecules 

ranging from one to ten (Supporting Information Table S1). Twenty AIMD simulations were 

performed for a total simulation time of about 330 ps. Initial spherical AIMD configurations 

were generated using Packmol75-76, with a minimum 3 Å van der Waals distance between 

individual molecules. AIMD simulations were carried out at constant temperature (T = 2000 K) 
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using a Langevin thermostat with a damping time of 0.3 ps. The 5.5 to 40 ps Born-Oppenheimer 

MD simulations were carried out with a 0.5 fs time step. The electronic structure for AIMD 

simulations was evaluated at the Hartree-Fock (HF) level of theory with the 3-21G77 basis set, 

and the impact of this method selection on the dynamics is discussed in Sec. 4. 

Simulations were carried out with either constant or variable spherical boundary conditions. 

Molecules outside the initial radius, denoted r1, experience a harmonic restraining force, while no 

force is applied to atoms inside the sphere. In the case of variable spherical boundary conditions, 

every 1.5 ps a Heaviside function was used to instantaneously decrease the boundary condition 

radius from r1 to r2 for 0.5 ps, after which the radius returned to its original value. The initial 

radius of the sampling space is chosen between 8 and 10 Å depending on the system size. For all 

variable spherical boundary condition simulations, the ratio of r2 to r1 was set to be between 0.6 

and 0.7. More discussion of the effect of boundary condition choice is presented in Sec. 4. 

Coordination numbers evaluated for molecular dynamics trajectories are evaluated based on 

rescaled covalent radii (1.25x) of indium, phosphorus, oxygen, and hydrogen atoms. These 

distance cut-offs are: 2.56 Å for In-O bonds, 3.16 Å for In-P bonds, and 1.79 Å for P-H bonds.78 

The values of these distance cutoffs also agree with the first local minimum on the radial 

distribution curve of In-O, In-P or P-H distance obtained from AIMD simulations.  

Structures obtained from the HF AIMD trajectories were extracted for further evaluation with 

density functional theory (DFT) including geometry optimization and transition-state search and 

characterization. Since the synthesis of InP QDs is carried out using solvents with low dielectric 

constant (ε=2), all the energetic evaluations are performed in vacuum. DFT calculations in 

TeraChem employed the default B3LYP79-81 functional, which uses the VWN1-RPA form82 for 

the local density approximation component of the correlation. The composite basis set consisted 
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of Los Alamos effective core potentials (LANL2DZ) for indium atoms and the 6-31G* basis set 

for all other atoms, which we refer to by the common short hand notation, LACVP*. Geometry 

optimizations of snapshots from AIMD trajectories were carried out in TeraChem using the DL-

FIND83 module with the L-BFGS algorithm in Cartesian coordinates. Default thresholds of 4.5 × 

10-4 hartree/bohr for the maximum gradient and 1.0 × 10-6 hartree for change in self-consistent 

energy were employed. Partial charges were obtained from the TeraChem interface with the 

Natural Bond Orbital (NBO) v6.0 package84.  NBO calculates the natural atomic orbitals (NAOs) 

for each atom by computing the orthogonal eigenorbitals of the atomic blocks in the density 

matrix, and the NBO partial charge on an atom is obtained as the difference between the atomic 

number and the total population for the NAO on the atom. 

To characterize the energetics of different reactions, molecules that participated in reactive 

events were extracted from the overall AIMD trajectory and further processed to obtain transition 

state (TS) structures and activation energies. The reacting subset was identified based on 

observing changes in connectivity between molecules. Reactant and product structures were first 

geometry optimized using QChem 4.085 using the B3LYP/LACVP* level of theory. We 

validated our choice of functional and confirmed that alternative functionals did not substantially 

change predicted energetics (Supporting Information Table S2). Two energetic characterizations 

were carried out for bond rearrangement. In the case of isolated bond dissociation or formation 

events (e.g. indium precursor agglomeration, indium-phosphorus precursor adduct formation), 

constrained optimizations were carried out in which only the bond distance (e.g. In-O or In-P) 

was held fixed at values that span the relevant reaction coordinate.  In the remaining cases (e.g. 

indium-precursor-assisted P-H bond dissociation), transition state searches were carried out in a 

multi-stage process. First, the freezing string method86 was used to provide an interpolated path 
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connecting the geometry-optimized reactant and product structures. In this method, linear 

synchronous transition (LST) is used for the initial interpolation of new path images that grow 

inward from reactant and product sides, and these structures are then optimized with the quasi-

newton method with hessian update for up to a number of user specified steps (in our case, 3). 

The final number of images in the path approaches a target density (here, 21) but may exceed 

that value because a new image is guessed for the path until reactant- and product-derived paths 

cross. Unlike other path-based transition state search methods, the freezing string method does 

not obtain a converged minimum energy path but aims to provide a good guess for the location 

of a TS at reduced computational cost. The highest-energy image from the freezing string path 

was used as an initial guess for a partial rational function optimization (P-RFO)87 TS search. 

These TSs were characterized with an imaginary frequency corresponding to the expected 

nuclear motion. For the dissociation processes involving multiple indium precursors, a second 

imaginary frequency with zero intensity and a value of <30i cm-1 was obtained.  Due to the 

abundance of soft modes in many of the structures, zero-point vibrational energy and entropy 

corrections were omitted. In cases where these effects could be included, activation energies 

changed by less than 2 kcal/mol. We also note that experimental solvents in QD synthesis consist 

of very low dielectrics. Inclusion of solvent effects88-89 led to a lowering of activation energies by 

at most 2 kcal/mol.  Tests for basis set superposition errors by computing the counterpoise 

correction90 also led to less than 1 kcal/mol corrections on phosphine precursor energetics and 

were thus omitted.  

3. Results and Discussion 

3.1 Formation of an InP cluster during AIMD simulations 
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Using high-temperature ab initio molecular dynamics, we directly observe the formation of  a 

small indium-rich InP cluster. Of twenty trajectories in total, this cluster formation is observed in 

an AIMD simulation that contains six In(Ac)3 and six PH3 molecules and constant boundary 

conditions (see Supporting Information Table S1). In this trajectory, overall cleavage of the three 

P-H bonds in a single PH3 molecule results in the formation of a cluster with In4P stoichiometry. 

While the cluster forms around only one PH3 molecule, the other five PH3 molecules rapidly 

adsorb and desorb from free indium sites. We estimate the maximum lifetime of adduct 

formation for each of the five PH3 molecules as ranging from 0.08 to 0.60 ps at 2000 K, during 

which time the In-P distance is shorter than the previously defined distance cutoff. Four major 

interactions are observed during the overall cluster formation process: 1) agglomeration of the 

six In(Ac)3 molecules into an [In(Ac)3]6 complex; 2) formation of an [In(Ac)3]6�PH3 adduct; 3) 

dissociation of three P-H bonds concomitant with formation of In-P bonds; and 4) 

configurational rearrangement of the intermediates and cluster structures. For step 3, P-H bond 

dissociation is facilitated by nearby acetates of the indium precursors and leads to In-P bond 

formation. When the acetate that carries out hydrogen abstraction comes from the same precursor 

as that which is forming the In-P bond, we refer to this event as intracomplex P-H bond 

dissociation. Alternatively, the acetate that carries out hydrogen abstraction may belong to a 

different indium precursor, which we refer to as intercomplex P-H bond dissociation. Energetics 

for representative steps of each of these processes obtained at the B3LYP/LACVP* level of 

theory are discussed in detail in Sec. 3.2.  
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Figure 2. (top) Changes in coordination number of P by H and (bottom) P by In during cluster 

formation in an AIMD trajectory. Coordination numbers are plotted every 0.1 ps. Snapshots 

showing the phosphorus and the coordinating indium and hydrogen atoms are annotated in inset 

as indicated by arrows colored by the number of coordinating hydrogen atoms (three: yellow, 

two: green, one: blue, zero: red).  

During the overall cluster formation process, the coordination environment of the reacting 

phosphorus precursor evolves from three hydrogen atoms to four or five indium atoms, as shown 

in Figure 2 (the evolution of In-P and P-H bond distances is available in Supporting Information 

Figure S1-2). In the first 4 ps of the high-temperature simulation, both the agglomeration and 

adduct formation processes occur, leading to significant rearrangement. During agglomeration, 

the six In(Ac)3 molecules form a C-shaped chain in which individual precursors become linked 

by bridging carboxylates. Next, an [In(Ac)3]6�PH3 adduct forms with the phosphorus atom 

weakly bound to an indium atom at one end of the chain, increasing the phosphorus coordination 

number (CN) from 3 to 4.  

Next, dissociation of the first and second P-H bonds also occurs within the short 4 ps 

timeframe. After the adduct formation step, the first P-H bond is dissociated through the 
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intercomplex mechanism, producing an HAc ligand and bringing the phosphorus CN back to 3 

(Supporting Information Figure S3). This ligand remains bonded to the original indium 

precursor, but the abstracted proton rapidly transfers to a nearby acetate on the other end of the 

chain, rendering a new indium center undercoordinated. This second precursor then forms a 

second bond with the central phosphorus atom, producing a seesaw shaped complex with a 

central In2PH2 unit (H-P-H angle of 98o and In-P-In angle of 163o).  At the same time as the 

In2PH2 unit is formed, an acetate on one of the two phosphorus-coordinating indium sites 

changes from doubly coordinating indium (chelating bidentate) to single, monodentate 

coordination.  This available oxygen anion is then free to abstract the second hydrogen atom 

from the central phosphorus (at around 2.7 ps) through the intracomplex pathway (Supporting 

Information Figure S4), leading to a three-coordinated phosphorus bonded with two indium 

atoms and one remaining hydrogen atom (In2PH). In the remaining 1.3 ps, the central In2PH unit 

evolves from a nearly planar geometry to tetrahedral, with the lone pair on the P atom facing a 

nearby indium atom that then coordinates the central phosphorus, forming an In3PH unit at 4.0 

ps.  Such fast rearrangement suggests that these processes have barriers below kBT = 4.6 

kcal/mol at this level of theory. 

After such rapid bond rearrangement, much slower rearrangement occurs over the next 25 ps, 

consisting primarily of slight rearrangement in the configuration of the central phosphorus unit 

and surrounding agglomerated indium precursors. During this interval, different phosphorus 

coordination types are observed including In2PH, In3PH, In4PH, In5PH and In6PH, with In3PH 

being the predominant configuration (around 72% of the time) followed by In4PH (around 25% 

of the time). These observations suggest a preference of phosphorus for CNs of 4 or 5. Along 

with the change of the phosphorus coordination, the two or three unbonded indium atoms 
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gradually move from the side of the InnPH unit to the top of the unit to form a cage-like structure 

that surrounds the remaining hydrogen atom (Supporting Information Figure S5). An available 

acetate must mediate the final P-H bond dissociation, but the agglomerated indium rearranges 

relatively slowly, causing the delay in the third P-H bond cleavage as compared to the first two 

P-H bond dissociations. We note, however, that the formation of the cage-like structure is likely 

only a necessity for phosphine precursors.  If P(SiMe3)3 is instead used as the precursor, the P-Si  

bond distance is both longer and weaker, making it possible for more distant, intercomplex 

indium precursors to mediate bond dissociation. 

This third P-H bond dissociation occurs through the intercomplex mechanism at around 28.9 

ps (Supporting Information Figure S6). The formation of the fourth In-P bond occurs 

simultaneously with the P-H dissociation process, leading to the formation of a seesaw-geometry 

In4P unit (Figure 2). Rearrangement of the cluster geometry is then observed after the 

dissociation of the third P-H bond until the end of the 40 ps AIMD simulation, with the 

phosphorus CN dynamically changing between four (~41% probability, approximate tetrahedral 

geometry) and five (~59% probability, approximate pyramidal or trigonal bipyramidal 

geometry). The average CN on the phosphorus atom is calculated to be around 4.6, slightly 

higher than that in the bulk, zinc blende InP crystals (CN = 4) but consistent with previous 

observations of coordination preference in other InP clusters46.  

We analyzed the In-P and In-O radial distribution functions from the last 10 ps of the AIMD 

trajectory (RDFs, see Supporting Information Figure S7). The In-P RDF has a first peak at 2.54 

Å91, identical to the experimental value of the In-P distance in bulk, zinc-blende InP crystals. 

Such good agreement confirms the fortuitous error cancellation observed between the use of HF 

and the near-minimal basis set with respect to higher-level theory (see Section 4 for more 
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details). The In-O radial distribution function has a first peak at 2.12 Å, consistent with the In-O 

bond distance in an isolated B3LYP/LACVP*-optimized In(Ac)3 molecule. We obtain a cluster 

structure by optimizing a snapshot taken at 35 ps in the AIMD simulation with B3LYP/LACVP* 

(Figure 3). This cluster structure has a central, tetrahedral core consisting of one phosphorus 

atom bonded to four indium atoms (In4P). The average In-P distance and In-P-In angle of the 

In4P unit match closely (within 0.01 Å and 1.2°, respectively) to experimental values for bulk, 

zinc-blende InP crystals. While additional incorporation of phosphorus in larger clusters may yet 

cause deviation in bond lengths from the zinc-blende InP structure, good agreement between 

experimental and theoretical bond lengths and angles for the crystal and the In4P complex 

corroborates the choice of theoretical methods employed. In addition to the core structure, two 

additional In(Ac)3 molecules bond to other indium precursors through four shared, bridging 

bidentate acetates. Experimentally, the surface of larger InP QDs has been characterized as 

indium rich18, and it has been found that an excess amount of indium precursors is beneficial for 

InP synthesis with indium carboxylate precursors25. Our computational results are both 

consistent with these experimental observations and suggest for the first time that the 

agglomeration of indium precursors is necessary for the formation of InP clusters and that 

clusters are  indium rich even during the earliest stages of growth.  

 



14 

 

 

Figure 3. (a) Structure of a cluster with tetrahedrally In-coordinated phosphorus obtained from 

geometry optimization of AIMD trajectory cluster (tetrahedron highlighted in yellow). (b) 

Comparison of average In-P bond distances and In-P-In angles in the cluster and experimental 

values for zinc blende, crystalline InP.  

While the coordination environment around several of the indium atoms changes greatly over 

the course of the cluster formation process, shifts in B3LYP/LACVP* In partial charges are 

modest (Supporting Information Figure S8). In contrast, the phosphorus and hydrogen atom 

partial charges are initially nearly neutral in phosphine (P: +0.03 e- and 3H: -0.03 e-) but gain 

and lose significant electron density (P: -1.65 e-, 3H: +1.52 e-), respectively, after all P-H bond 

dissociation steps. Relative charge values are also consistent between both B3LYP/LACVP* and 

HF/3-21G, in agreement with observations about error cancellation for precursors in this system 

(see Section 4). During the dissociation of the first P-H bond, the electron density on the P atom 
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increases by 0.52 e- while the electron density on the leaving hydrogen atom decreases by 0.51 

e-. The electron density on the indium atom bonded to the phosphorus atom slightly increases by 

about 0.09 e- (i.e., becomes more neutral) while electron densities on other indium atoms 

decrease slightly (Supporting Information Table S3). During the dissociation of the second and 

third P-H bonds, a similar trend for the charge changes of phosphorus, hydrogen and indium 

atoms are observed (Supporting Information Table S4-5). These simultaneous and symmetric 

changes of phosphorus and hydrogen electron densities occur alongside the increase of the P-H 

bond distances, suggesting the polarization of the P-H bond during the dissociation process 

(Supporting Information Figure S9). Less drastic change of P electron density would likely be 

observed during the dissociation of a P-Si bond when P(SiMe3)3 is used as the precursor because 

the P-Si bond is already more polar than P-H bond and P charges in P(SiMe3)3 (-0.71) are closer 

to the final value in the In4P cluster (-1.65).  Overall, this charge analysis suggests a partially 

ionic P-H dissociation mechanism mediated by the strongly negative charge localized on the 

abstracting carboxylate that causes evolution in the electronic structure around the phosphorus 

precursor but does not significantly affect the indium precursor.  

3.2 Characterization of model reactions 

Following analysis of the HF/3-21G AIMD trajectory that permitted direct observation of 

cluster formation, we now extract reaction steps sampled across trajectories and analyze 

energetics of indium agglomeration and In-P bond formation minimum energy pathways at the 

B3LYP/LACVP* level of theory.  

a. Indium precursor agglomeration 
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Agglomeration of indium precursors (In(Ac)3) to [In(Ac)3]n complexes is observed in every 

AIMD trajectory with more than one indium precursor. During dynamics, complexes are formed 

through carboxylate ligands that bridge multiple indium atoms. We model the energetics for this 

agglomeration in the simplest case of two In(Ac)3 molecules forming an [In(Ac)3]2 complex 

(Supporting Information Figure S10). In order to identify possible stable intermediates, we ran a 

12 ps HF/3-21G AIMD simulation and geometry optimized 100 equally spaced snapshots in the 

last 10 ps with B3LYP/LACVP* (Supporting Information Table S6). The resulting intermediates 

are characterized by one to four bridging carboxylates shared between the two indium atoms.  

Five carboxylate ligand binding modes are observed: i) partial (3%) and ii) full (1%) 

monodentate (i.e. singly-coordinating indium) that are distinguished by the distance of the non-

coordinating oxygen to the indium center; iii) chelating (52%), iv) bridging (31%), and v) 

chelating, bridging (13%) bidentate (i.e. doubly-coordinating indium), which are distinguished 

by the extent to which the oxygen atoms strongly coordinate the same indium atom (chelating) or 

are shared between two indium atoms (bridging) (Figure 4a). The observed binding modes are 

consistent with previous experimental and computational studies18, 92, supporting indium 

agglomeration in the AIMD trajectories as mechanistically relevant.  

When carboxylates bind in a monodentate fashion, the In-O bond is shortened (2.02 Å for 

partial mode and 1.93 Å for full mode) with respect to the three bidentate modes (2.11-2.26 Å), 

suggesting higher In-O bond order in monodentate cases. Monodentate modes are also 

thermodynamically unfavorable with respect to the bidentate binding modes, as suggested by 

their low occurrence frequencies. For example, the energetic cost of forming a full-monodentate 

acetate from a chelating-bidentate structure in the isolated precursor (ΔEFM-CB) is calculated as 21 

kcal/mol (Supporting Information Figure S11). Notably, the carboxylate chain length has 
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essentially no effect on the In-O bond energy, as ΔEFM-CB for the longer chain indium myristate 

(In(My)3, see Figure 1) is comparable at about 20 kcal/mol. The value of ΔEFM-CB can be reduced 

in [In(Ac)3]2 complexes (as low as 15 kcal/mol) due to the stabilization offered from the bridging 

acetates (Supporting Information Figure S12). Further stabilization of monodentate carboxylates 

is likely in larger agglomerated complexes, as we previously noted several monodentate species 

that formed dynamically during the high-temperature AIMD simulations.  

 

Figure 4. (a) Indium-carboxylate coordination modes obtained from optimized structures of 

MD-sampled [In(Ac)3]2 complexes annotated with average In-O distance and frequency of 

occurrence. (b) Relative energies of chelating bridging bidentate or bridging bidentate [In(Ac)3]2 

complex structures with increasing numbers of bridging bidentate ligands.  

As the number of bridging ligands between In centers increases, the formation energy of the 

[In(Ac)3]2 complex becomes increasingly favorable. While a single bridging acetate ligand is 

only favorable by -2 ± 2 kcal/mol, the energetic benefit increases to -18 ± 4 kcal/mol for four 

bridging acetates (Figure 4b). Ranges in energetics here are obtained from the small variations in 

100 geometry-optimized snapshots. We have also computed energetic barriers for the sequential 

formation of bridging ligands. The initial agglomeration of two indium precursors to form a 

complex with one to three bridging acetates has a low activation energy (0-3 kcal/mol), while the 
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barrier for adding a fourth bridging acetate to the complex is calculated to be 6 kcal/mol 

(Supporting Information Figure S13). The higher barrier due to formation of the fourth bridging 

interaction is largely due to the fact that the three-bridge structure is more stable than the four-

bridge structure by about 2 kcal/mol (i.e. the reverse barrier for transitioning from four- to three-

bridge structures is only 4 kcal/mol). In each step, the new acetate bridge forms by orienting 

toward the neighboring indium atom in a position compatible with bonding followed by 

shortening of the second indium-oxygen bond.  

Overall, observations of both energetically favorable and low-barrier rearrangement for 

agglomeration through bridging interactions supports our previous observations of dynamic 

indium agglomeration during cluster formation. We note, however, that indium precursors 

employed during experimental synthesis (e.g., indium myristate) may be less likely to form the 

highly-interconnected four-bridge structures due to steric repulsion of the long alkyl chains. 

Importantly, the observation of the reduction in energetic penalty for monodentate indium-

carboxylate ligands with increasing agglomeration is likely preserved even in the case of long 

chains. This result suggests that agglomeration of the indium precursor may facilitate creation of 

indium sites available for forming In-P bonds. 

a. Formation of In-P Bonds 

In addition to indium precursor agglomeration, AIMD sampling of mixtures of In(Ac)3 and 

PH3 precursors reveals multiple modes of In-P bond formation. In all cases, PH3 molecules first 

weakly associate with individual In(Ac)3 or complexed [In(Ac)3]n precursors to form 

In(Ac)3�PH3 or [In(Ac)3]n�PH3 adducts. We previously noted that this weak interaction was 

characterized during dynamics by relatively short, sub-ps lifetimes. For stable In-P bond 

formation to occur, P-H bond dissociation must occur. When the In-P bond formation and P-H 
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bond cleavage is mediated by a carboxylate coordinated to the indium forming the In-P bond, 

this process is called intracomplex, while we refer to the process as intercomplex when the 

acetate is coordinated to a different indium precursor (Scheme 1). We now examine possible 

mechanistically relevant differences in the energetics between the two types of P-H bond 

dissociation pathways.  

Scheme 1. (a) Intracomplex P-H bond dissociation mechanism with In(Ac)3 or [In(Ac)3]2  both 

participating in the In-P bond formation and carrying out hydrogen abstraction. (b) Intercomplex 

P-H bond dissociation mechanism in which a second In(Ac)3 carries out the hydrogen 

abstraction.  

 

Intracomplex pathway. We first consider the formation of an In(Ac)3�PH3 adduct and 

subsequent intracomplex P-H bond dissociation (Scheme 1a, Supporting Information Figure S14, 

and Figure 5). The optimized In(Ac)3�PH3 adduct has an In-P distance of 3.69 Å, confirming the 

weak interaction between In and P observed in AIMD trajectories. Following the barrierless 

adduct formation, one of the In-O bonds breaks (dIn-O=3.65 Å) and the uncoordinated oxygen 

abstracts a proton from PH3 to form an In-P bond (dIn-P=2.61 Å). The In-O and In-P bond 

distances closely resemble their values in the product of 3.77 Å and 2.55 Å respectively, which 

would initially suggest the formation of a late transition state. However, the transferring proton is 
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shared between phosphorus and oxygen (dP-H=1.62 Å, dO-H=1.34 Å) in the transition state 

(Supporting Information Table S7). The activation energy for the In-P bond formation process is 

21 kcal/mol, which is the same as the energy penalty to form a full-monodentate acetate from a 

chelating-bidentate acetate in In(Ac)3.  

 

Figure 5. Energetics and structures of the intracomplex pathway with one In(Ac)3 and one PH3 

molecule for In-P bond formation. Indium-phosphorus distances are shown in black and indium-

oxygen distances are shown in blue for the unbonded oxygen that is denoted with a blue asterisk.  

Since the energetic cost of forming monodentate acetates is lowered in agglomerated indium 

precursors, we computed the energetics of an intracomplex pathway using a two-bridge 

[In(Ac)3]2 complex (Scheme 1a, Supporting Information Figure S15 and Figure 6). Here, we 

observe an adduct with a shorter In-P bond (2.85 Å) that is mediated by partial lengthening of 

one of the indium-acetate oxygen bonds (3.01 Å). The process of forming the [In(Ac)3]2�PH3 

adduct destabilizes the uncoordinated oxygen, requiring 5 kcal/mol. After the adduct formation, 

the destabilized oxygen further dissociates from indium (dIn-O=3.68 Å) in order to abstract a 

proton from the associated phosphine, with a barrier of 15 kcal/mol. The overall barriers for the 

process are 20 kcal/mol, yielding no net energetic benefit of agglomeration on the activation 
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energy for In-P bond formation in this case. However, we did observe during dynamics that 

agglomeration of larger numbers of indium precursor copies increased the likelihood of dynamic 

formation of monodentate acetates. Further analysis in this case reveals that although 

monodentate mode is more stabilized in the [In(Ac)3]2 complex, the proton affinity of the 

uncoordinated oxygen in the [In(Ac)3]2 complex is lowered as compared to In(Ac)3 (Supporting 

Information Table S8). The cancellation of these two effects produces comparable activation 

energies and transition state structures for the two intracomplex dissociation processes.  Notably, 

in both cases, In-O and In-P bond distances more closely resemble the products than the adduct 

distances, but the transferring hydrogen is located symmetrically between P and O (Supporting 

Information Table S7). 

 

Figure 6. Energetics and structures of the intracomplex pathway between a [In(Ac)3]2 complex 

and one PH3 molecule for In-P bond formation. Indium-phosphorus distances are shown in black 

and indium-oxygen distances are shown in blue for the unbonded oxygen that is denoted with a 

blue asterisk. 

Intercomplex pathway. We modeled the intercomplex pathway using one In(Ac)3�PH3 adduct 

and a separated In(Ac)3 precursor for comparison with the intracomplex pathway (Scheme 1b, 
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Figure 7, and Supporting Information Figure S16). The formation of a bridging acetate between 

the adduct and In(Ac)3 has a reaction barrier of 4 kcal/mol due to the partial dissociation of an 

In-O bond to form a bridging-bidentate acetate. The subsequent P-H bond dissociation is 

facilitated by the cleavage of another In-O bond in the nearby In(Ac)3, after which the 

uncoordinated oxygen abstracts a hydrogen atom from PH3, leading to the formation of an In-P 

bond. The transition state is characterized by a 0.5 Å shorter distance between indium and the 

under-coordinated oxygen (dIn-O=3.2 Å) than that in the corresponding transition state from the 

intracomplex pathway, although P-H and O-H distances are comparable (Supporting Information 

Table S7). The shorter In-O bond distance lowers the activation energy by 7 kcal/mol with 

respect to the intracomplex pathway. This relationship between distance and relative energetics 

agrees well with the evaluated In-O bond distance dependence of energetics in isolated In(Ac)3 

molecule where a configuration with a 3.2 Å In-O bond is 5 kcal/mol lower in energy than one 

with a 3.7 Å In-O bond (Supporting Information Figure S11). The favorable geometry afforded 

in this intercomplex pathway calculation implicates the dominance of intercomplex pathways 

over the intracomplex pathway, consistent with AIMD trajectories in which the majority of In-P 

bond formation steps occurred through the intercomplex pathway. This observation also 

highlights the important role of bridging coordination modes to both stabilize indium while 

predisposing an oxygen atom toward proton abstraction from the phosphorus precursor.  
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Figure 7.  Energetics and structures of the intercomplex pathway for In-P bond formation. 

Indium-phosphorus distances are shown in black and indium-oxygen distances are shown in blue 

for the unbonded oxygen that is denoted with a blue asterisk. 

We have noted that In-P bond formation and P-H dissociation pathways have energy barriers 

corresponding roughly to the energetic cost of forming a monodentate acetate on an indium 

precursor. Therefore, starting from an indium precursor structure with pre-formed monodentate 

acetates should lower the energy barrier for the formation of In-P bonds. We designed a new 

intracomplex pathway starting with a full-monodentate In(Ac)3 and PH3 molecule (Supporting 

Information Figure S17-18) and confirmed that the barrier of new pathway is calculated to be 5 

kcal/mol. Although the reaction barrier is lowered, we have simply shifted the cost to form a full-

monodentate In(Ac)3 away from the P-H dissociation transition state and have not reduced the 

overall steepness of the reaction landscape. However, dynamic formation of monodentate 

acetates is likely under experimental conditions, particularly if ligands are designed that stabilize 

the process of forming undercoordinated indium species by shifting the relative energetics of 

bidentate and monodentate binding modes. 

Since the experimental phosphorus precursor (P(SiMe3)3) has different geometric and 

electronic properties than PH3, we expect that these differences should affect In-P bond 
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formation energetics (Supporting Information Figure S19-20). Here, the adduct formation is 

again barrierless. However, the In-P distance (2.75 Å) is 0.94 Å shorter in this adduct than in 

In(Ac)3�PH3 due to the additional hydrogen bonding interactions between methyl groups of 

P(SiMe3)3 and indium precursor acetate ligands (Supporting Information Figure S21). As a 

result, the formation of the In-P bond not only requires the cleavage of an In-O bond but also 

disrupts some of the favorable hydrogen bonding interactions. The loss of these hydrogen 

bonding interactions explains why a higher estimate of the activation energy (27 kcal/mol) is 

observed for the larger precursor, despite the lower bond dissociation energy of the P-Si bond. 

We have not computed the energetics of the intercomplex pathway due to computational cost and 

large number of soft degrees of freedom, but we expect that the reaction energy will be 

significantly lowered both due to the lower activation energy for that pathway with phosphine 

and due to the preservation of favorable hydrogen bonding interactions. While In-P bond 

formation with phosphine precursors was endothermic by 13 kcal/mol, it becomes exothermic by 

5 kcal/mol for P(SiMe3)3 precursors, consistent with differences in the bond dissociation energy 

of the P-H and P-Si bonds in the two molecules. A clear mechanistic picture emerges that the 

phosphorus-ligand bond in the phosphorus precursor controls reaction thermodynamics for In-P 

bond formation, while the indium-ligand bond controls the activation energy, and thus kinetics, 

for the process. Thus, while experimental efforts to tune InP QD synthesis have focused on 

phosphorus precursor chemistry22 without significant effect on quality of QDs,  a concerted 

effort that tunes both indium and phosphorus precursors is likely necessary. 

4. Acceleration approach 

In order to accelerate the fruitful sampling and discovery of pathways that lead to formation 

of InP QDs, we have made a number of careful approximations. We now consider what effect 
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such approximations may have on the predicted mechanism of cluster growth by considering a) 

the effect of model precursor choice, b) the role of the electronic structure method and basis set 

size in AIMD, and c) the choice of boundary conditions employed. 

a. Choice of model precursors  

Long chain indium carboxylates such as indium myristate (In(My)3, 130 atoms) and 

tris(trimethylsilyl) phosphine (P(SiMe3)3, 40 atoms) are the most commonly used precursors for 

the synthesis of InP QDs19-21, 24-26, 93 (see Figure 1). Due to the large size of these experimental 

precursors, we employ indium acetate (In(Ac)3, 22 atoms) and phosphine (PH3, 4 atoms) as 

model molecules (see Figure 1). Our choice is justified in part by the fact that phosphine has 

been used as a precursor with In(My)3 to grow InP QDs94, and previous computational QD 

studies have often employed acetates to model longer chain carboxylates41, 92. The speed-up 

obtained by using the model precursors is substantial: HF/3-21G gradient calculations on In(Ac)3 

are about 6 times faster than In(My)3 and on PH3 are about 100 times faster than P(SiMe3)3. 

In order to identify whether the simplifications of the model precursors affect the electronic 

and geometric structure, we compared properties of the simplified molecules with their 

experimental analogues. For the two indium precursors, identical In or O partial charges and In-

O bond distances are obtained regardless of the use of HF/3-21G or B3LYP/LACVP* as the 

electronic structure method (Supporting Information Table S9). We investigated whether the 

steric effect of longer chain carboxylates alters dynamics by carrying out AIMD simulations with 

bulkier indium trimethyl acetate (In(tBuCOO)3, 49 atoms) and PH3 precursors. Comparable 

reaction pathways were observed in AIMD trajectories of In(tBuCOO)3 and In(Ac)3 (Supporting 

Information Figure S22).  
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Unlike the indium precursors, the B3LYP/LACVP* partial charges of phosphorus in PH3 and 

P(SiMe3)3 substantially differ at  0.01 e- and -0.71 e-, respectively. This difference is expected 

since P and H atoms have comparable electronegativity95, giving rise to covalent bonding, while 

the less electronegative Si leads to a partially ionic P-Si bond. The P-H bond is also 0.86 Å 

shorter than the P-Si bond, suggesting a stronger interaction between P and H atoms as compared 

to that between P and the SiMe3 group that is also reflected in the B3LYP/LACVP* bond 

dissociation energies: 78 kcal/mol for the P-H bond and 62 kcal/mol for the P-Si bond. 

Nevertheless, AIMD simulations of In(Ac)3 and P(SiMe3)3 molecules generated analogous 

intermediates and reaction steps as when PH3 was used (Supporting Information Figure S22).  

Reaction coordinate characterization in this work focuses on PH3 precursors, but both predicted 

and calculated differences with respect to P(SiMe3)3 precursors will be discussed where relevant. 

b. Accelerated ab initio molecular dynamics sampling 

We have employed a number of strategies to enhance the rate of sampling of reactive 

collisions between indium and phosphorus precursors. In addition to employing an elevated 

temperature of 2000 K, we carry out dynamics with a low level of theory and near-minimal basis 

set combination (i.e., HF/3-21G). The choice of high-temperature was made to accelerate the 

timescale of observed reaction events in the simulations while preserving qualitative bonding and 

bond rearrangement that is likely to observe at lower temperatures (e.g., 1000 K) closer to 

solution chemistry conditions. Snapshots from the dynamics are then refined by 

B3LYP/LACVP* geometry optimizations and minimum energy path searches. Therefore, the 

HF/3-21G AIMD sampling only needs to reproduce qualitative changes in bonding consistent 

with B3LYP/LACVP*. The computational benefit of using HF/3-21G is significant: for an 

example 156 atom simulation that contains 6 indium precursors carried out in TeraChem on 2 
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GPUs, HF/3-21G requires about 60 s per MD step while B3LYP/LACVP* requires about 1900 s 

per MD step.  We note that the predominant computational cost in all simulations presented in 

this work is associated with the electron-rich indium precursors.  

It is useful to quantify, however, the extent to which HF, which includes no treatment of 

dynamic correlation, produces a substantially different description of the electronic structure than 

a hybrid DFT approach. First, we compare the equilibrium properties of In(Ac)3 and PH3 

precursors (Figure 8). HF yields shorter In-O and P-H bond distances than B3LYP at the same 

basis set size by about 0.05 and 0.03 Å, respectively. However, both HF and B3LYP bond 

distances are reduced when increasing the basis set size from 3-21G to LACVP* by about 0.03 

to 0.05 Å, with B3LYP reductions slightly larger than HF. The net result is a cancellation of 

errors between the underestimation of bond lengths by HF and overestimation from the 

incomplete basis, leading to agreement within 0.01 Å between HF/3-21G and B3LYP/LACVP* 

for In-O and P-H bond lengths.  Interestingly, partial charges computed with NBO show a similar 

trend. For the same basis set, HF overpolarizes the In-O bond compared to B3LYP. For a given 

method, increasing the basis set size leads to larger In-O charge separation, and B3LYP is more 

sensitive to the increase in basis set size than HF is. The net result is that while the In partial 

charge with HF/LACVP* of around +2.2 e- overestimates the B3LYP/LACVP* In charge by 

+0.2 e-, HF/3-21G and B3LYP/LACVP* partial charges are in quantitative agreement. Similar 

fortuitous cancellation of errors between basis set incompleteness and absence of treatment of 

dynamic correlation is apparent in the P atom charges in PH3. Agreement of vibrational 

frequencies is also good, as comparison of frequencies for the optimized In(Ac)3 molecule using 

HF/321G and B3LYP/LACVP* reveals that the absolute mean difference for frequencies larger 

than 50 cm-1 is around 9% (Supporting Information Table S10). This overall fortuitous error 
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cancellation therefore further motivates sampling AIMD at the HF/3-21G level at around 1/30th 

of the computational cost of a B3LYP/LACVP* calculation. 

 

Figure 8. Comparison of partial charges (In or P, top) and bond distances (bottom) for 

In(Ac)3 (left) and PH3 (right) molecules obtained with Hartree-Fock or DFT (B3LYP) using the 

3-21G (black line) or LACVP* (blue line) basis sets. 

While equilibrium properties are consistent between HF/3-21G and B3LYP/LACVP*, our 

ultimate interest is in reproducing dynamics and sampling of reactive intermediates, which 

necessitates moving away from equilibrium, zero-temperature properties. Parallel AIMD 

simulations with both HF/3-21G and B3LYP/LACVP* were performed for a system containing 

one In(Ac)3 and one PH3 molecule. Nearly identical In-O and P-H radial distribution function 

peak values and shapes were obtained from the two simulations (Supporting Information Figure 

S23). As an even more strenuous test case, at transition-states, basis set superposition errors and 

static correlation errors can dominate and interfere with the error cancellation. For the formation 

of an In-P bond from an In(Ac)3�PH3 adduct to In(Ac)2PH2�HAc, HF/3-21G predicts both a 

lower barrier (~6 kcal/mol less) and more favorable reaction energy (~13 kcal/mol lower). This 

discrepancy in barrier heights is not necessarily a disadvantage, as lower barriers for desired 
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reactions will lead to enhanced sampling of reaction events during the AIMD simulation. 

Regardless, all AIMD trajectories obtained with HF/3-21G are then quantitatively assessed with 

B3LYP/LACVP* through geometry optimization and transition state searches.  

b. The choice of boundary conditions 

For reaction mechanism discovery involving organic species, it has recently been shown72 

that enforcing spherical boundary conditions that shrink periodically is a useful way to enhance 

the frequency of collisions during molecular dynamics that lead to chemical transformations. As 

the chemistry of the systems studied here are quite distinct from small organic molecules, we 

have tested the extent to which periodically shrinking boundary conditions is a useful strategy to 

enhance the sampling rate of reactive collisions between indium and phosphorus precursors. In 

this approach, the key adjustable parameters in this approach are the ratio (r2/r1) of the smaller 

radius (r2) to the larger radius (r1), the time spent at each radius (t1 versus t2), and the harmonic 

restraint force applied (k1 versus k2) to enforce the boundary conditions. We have chosen r2/r1 to 

be around 0.6-0.7 since a tighter r2 can lead to the unphysical cleavage of C-C and C-H bonds. 

We note that the shrinking process also slows convergence to self-consistency and increases the 

time per MD step. For example, in a simulation containing 6 indium precursors and 6 

phosphorus precursors, the time per MD step increases by a factor of 1.7 when the smaller 

boundary is enforced.  For the other two parameters, we employ the defaults outlined in Ref. 72, 

which correspond to t1=1.5 ps and t2=0.5 ps and force constants k1=1.0 kcal/(mol�Å2) and k2=0.5 

kcal/(mol�Å2).  One further disadvantage of this approach is the loss of direct information about 

the timescale of events, but since we are already using a lower level of theory (HF/3-21G), direct 

dynamics timescales already carry limited meaning. 
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Generally, we have observed different growth intermediates when using different boundary 

conditions. For example, in two AIMD simulations containing one In(Ac)3 and eight PH3 

molecules (Supporting Information Figure S24), the use of shrinking boundary conditions leads 

to the formation of an intermediate species In(Ac)2PH2 while the use of constant boundary 

conditions only leads to the formation of an In(Ac)3�PH3 adduct. Conversely, in another two 

AIMD simulations sampling the interaction between three In(Ac)3 and thirty PH3 precursors, 

only the intermediate structures such as [In(Ac)3]3 complexes and [In(Ac)3]3�PH3 adducts were 

observed in a 15 ps simulation at periodically shrinking boundary conditions without explicit In-

P bond formation. Employing constant boundary conditions for the same system leads to the 

formation of various different intermediates containing stable In-P bonds within 12 ps (Figure 9). 

Although [In(Ac)3]3�PH3 is still observed, further interaction between an acetate and P-H bond 

within the [In(Ac)3]3�PH3 adduct leads to the first P-H bond dissociation at about 5 ps followed 

by a second P-H bond dissociation at about 8 ps. Mechanisms and dynamics of In-P bond 

formation are discussed in detail in the main body of the text. However, these observations 

highlight the fact that for the more complex inorganic systems we are interested in, an effective 

sampling strategy must incorporate varying absolute and relative numbers of indium and 

phosphorus precursors and applying both variable and constant boundary conditions.   
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Figure 9. (a) Evolution of In-P distances in a constant spherical boundary AIMD trajectory 

for a single PH3 molecule that forms In-P bonds with three In(Ac)3 molecules. The distance 

cutoff for In-P bonding is indicated as a shaded region in the graph. (b) Snapshots of only the 

reacting molecules from the trajectory at different simulation times as annotated by color-coded 

asterisk in (a).  

4. Conclusions 

We have presented a computational approach for the sampling and discovery of reactive 

intermediates that form during early stage growth of indium phosphide quantum dots. As the 

structure of intermediates were previously unknown, we undertook a number of efforts to ensure 

sampling of possible favorable configurations over a total of 330 ps of AIMD on systems up to 

277 atoms in size. This acceleration strategy included the use of GPU-accelerated quantum 

chemistry employed without explicit dynamic correlation (i.e. Hartree-Fock) and in a near-

minimal basis set (3-21G). Opposing effects of inclusion of dynamic correlation (i.e. with the 

hybrid functional B3LYP) and a larger LACVP* polarized basis set led to fortuitous error 

cancellation that imparted excellent agreement between HF/3-21G and B3LYP/LACVP* 

geometric and electronic structure, allowing us to directly sample dynamics at 1/30th of the 
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computational cost of a production-quality DFT calculation. Additionally, we employed variable 

boundary conditions in order to enhance diversity and number of reactive collisions that were 

sampled in our high-temperature molecular dynamics.  

Our sampling strategy enabled us to directly observe the formation of an indium-rich In4P 

cluster that already possesses the same structural properties as the experimental bulk zinc-blende 

crystal structure of indium phosphide. Our indium rich cluster is consistent with experimental 

characterization of larger InP QDs, and we demonstrate for the first time that an indium-rich 

surface is likely present from the earliest stages of growth. While only indium phosphide was 

considered in this work, the mechanistic insights we observed are likely also relevant to the 

growth of other phosphide materials, such as Zn3P2, which has been shown experimentally96 to 

form Zn-rich clusters. During the 40 ps cluster formation trajectory, we observed rapid 

agglomeration of indium precursors around a single phosphorus precursor.  In these simulations, 

cluster formation was mediated by cooperative effects, which we refer to as an intercomplex 

pathway, in which one indium precursor formed a bond with the phosphorus center while 

another abstracted a proton from phosphine. We then characterized the minimum energy 

pathways of key processes observed in dynamics and confirmed that intercomplex pathways for 

In-P bond formation was also found to be more energetically favorable than the intracomplex 

pathway due to stabilization of the indium-acetate oxygen during the proton abstraction process.  

Overall, we consistently observed that the highest barriers to In-P bond formation were 

exclusively determined by energetic penalties associated with indium-carboxylate bond cleavage. 

The net favorability of the reaction, on the other hand, was determined by the nature of the 

phosphorus precursor (e.g. PH3 or P(SiMe3)3). These observations challenge the paradigm that a 

single precursor may be tuned in order to optimize the target size distribution of InP QDs. 
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Altering the stability of agglomerated and monodentate indium precursor structures will adjust 

the energy landscape for In-P bond formation, while tuning phosphorus precursor chemistry can 

alter how much heat is generated during the QD synthesis process by the downhill nature of the 

precursor reaction. In the future, a greater focus on tuning the chemistry of indium precursors 

should enhance the quality of InP QDs with desired size distributions and enable the growth of 

the use of InP QDs in a wide range of consumer applications.  
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