29 research outputs found

    Late Pleistocene montane forest fire return interval estimates from Mount Kenya

    Get PDF
    Past forest fire events and fire frequencies are reconstructed with sediment-charcoal records at lake catchment spatial scales. Few quantitative palaeofire analyses exist in tropical montane forests, where fire return intervals are long (decadal and centennial scales) because of the infrequency of fire weather and fuel conditions. Fire return intervals are a key characteristic of fire regimes and changing fire frequencies rapidly alter land cover compositions and vegetation structure. Charcoal records from small lakes with relatively small catchments covered with dense forest provide an opportunity to reconstruct low-frequency, high-severity fires through a time series decomposition approach to identify charcoal peaks above a varying background rate as a proxy for palaeofire events. The sediment core from Rumuiku wetland on Mount Kenya, equatorial eastern Africa, accumulated a nearly linear age-depth model and provided a high temporal resolution (10 years cm -1 ) sieved charcoal count record (>125 µm). Pollen analysis showed a significant change in montane forest assemblage occurred at 21 200 cal a bp from a montane forest with abundant Podocarpus and Juniperus to a forest with more abundant Hagenia . This change in forest altered the vegetation composition and structure with concomitant changes to the fire regime. Forest biomass in the Hagenia forests decreased and it is likely that fire activity qualitatively changed toward lower intensity and lower severity fires. The quantitative fire event reconstruction focuses on the interval from 27 000 to 16 500 cal a bp and the older montane forest that experienced higher severity fires from 27 000 to 21 200 cal a bp, which reconstructed a temporally heterogeneous fire regime with fire return intervals that ranged from 30-430 years and a mean of 120 years (median 160 years) in the catchment. These are the first estimates of fire return intervals of mountain forests in eastern Africa. We then explore the potential for further comparative research and incremental research contributions to improve quantitative and qualitative palaeofire research in tropical forest ecosystems. We discuss the potential to use these types of data for characterizing variables of fire regimes prior to ostensibly significant modification by anthropogenic activity as well as during the recent past as human land use pressures increased within Afromontane forests

    Edaphic and Topographic Constraints on Exploitation of the Central Kenya Rift by Large Mammals and Early Hominins

    Get PDF
    Our aim in this paper is to create a large-scale palaeoenvironmental and spatio-temporal framework for interpreting human land use and exploitation of large mammals in the Central Kenya Rift over the past 2 million years, with particular reference to the Nakuru-Elmenteita-Naivasha basin and its adjacent rift flanks on the Kinangop Plateau and Mau escarpment. We pay particular attention to the tectonic and volcanic history of the region, and to the system of lakes that have undergone periodic expansion and contraction during the Pleistocene in response to climatic and tectonic controls. We use this information to reconstruct topographic features as they would have existed at different periods of the past and their likely influence on patterns of large-mammal movements. In addition we present a systematic mapping of variations in the mineral nutrients of soils – soil edaphics – based on 150 analyses of trace elements in modern soil and vegetation samples. Soil edaphics play an important role in animal and human health today, with serious deficiencies in some areas, and would have exerted an important constraint on animal distributions and movements in the past. We show how soil-edaphic properties vary across the region and demonstrate a close relationship between them and the underlying geology and sediments, which allows us to project patterns back into the past and extrapolate them over larger areas. Using this combination of variables, we construct maps that help to place archaeological sites into their wider regional setting. We show that the Acheulean site of Kariandusi occupies a unique window of opportunity in place and time for trapping mammals constrained to move through a narrowly defined topographic bottleneck between edaphically-rich areas. We infer that the site was used for a simple form of ambush hunting and briefly explore the implications for differential site use, formation, preservation and visibility

    Scientific Drilling

    Get PDF

    Subfossil statoblasts of Lophopodella capensis (Sollas, 1908) (Bryozoa: Phylactolaemata: Lophopodidae) in the Upper Pleistocene and Holocene sediments of a montane wetland, Eastern Mau Forest, Kenya

    Get PDF
    Lophopodella capensis (Sollas, 1908) is only known from a limited number of palustrine and lacustrine sites in southern Africa and single sites in both Kenya and Israel. Statoblasts of L. capensis were found preserved in the Upper Pleistocene and Holocene aged sediments of Enapuiyapui wetland, Eastern Mau Forest, western Kenya. The wetland is a headwater microcatchment of tributaries that feed into the Mara River and the Lake Victoria Basin. Bryozoan taxa were not surveyed in a 2007 macroinvertebrate biodiversity assessment. The presence of L. capensis at this site marks the second observation of this taxon in Kenya, 65 km from Lake Naivasha, where observed prior, and in a location some 1000 meters higher. The results suggest Bryozoa should be included in aquatic biodiversity surveys that target these wetlands and that bryozoan remains should be incorporated into palaeoecological studies as useful palaeoenvironmental indicators

    A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa.

    Get PDF
    Eastern Africa has played a prominent role in debates about human evolution and dispersal due to the presence of rich archaeological, palaeoanthropological and palaeoenvironmental records. However, substantial disconnects occur between the spatial and temporal resolutions of these data that complicate their integration. Here, we apply high-resolution climatic simulations of two key parameters, mean annual temperature and precipitation, and a biome model, to produce a highly refined characterisation of the environments inhabited during the eastern African Middle Stone Age. Occupations are typically found in sub-humid climates and landscapes dominated by or including tropical xerophytic shrubland. Marked expansions from these core landscapes include movement into hotter, low-altitude landscapes in Marine Isotope Stage 5 and cooler, high-altitude landscapes in Marine Isotope Stage 3, with the recurrent inhabitation of ecotones between open and forested habitats. Through our use of high-resolution climate models, we demonstrate a significant independent relationship between past precipitation and patterns of Middle Stone Age stone tool production modes overlooked by previous studies. Engagement with these models not only enables spatiotemporally explicit examination of climatic variability across Middle Stone Age occupations in eastern Africa but enables clearer characterisation of the habitats early human populations were adapted to, and how they changed through time

    Late Holocene wetland transgression and 500 years of vegetation and fire variability in the semi-arid Amboseli landscape, southern Kenya

    Get PDF
    The semi-arid Amboseli landscape, southern Kenya, is characterised by intermittent groundwater-fed wetlands that form sedimentary geoarchives recording past ecosystem changes. We present a 5000-year environmental history of a radiocarbon dated sediment core from Esambu Swamp adjacent to Amboseli National Park. Although radiocarbon dates suggest an unconformity or sedimentary gap that spans between 3800 and 500 cal year BP, the record provides a unique insight into the long-term ecosystem history and wetland processes, particularly the past 500 years. Climatic shifts, fire activity and recent anthropogenic activity drive changes in ecosystem composition. Prior to 3800 cal year BP the pollen data suggest semi-arid savanna ecosystem persisted near the wetland. The wetland transgressed at some time between 3800 and 500 cal year BP and it is difficult to constrain this timing further, and palustrine peaty sediments have accumulated since 400 cal year BP. Increased abundance of Afromontane forest taxa from adjacent highlands of Kilimanjaro and the Chyulu Hills and local arboreal taxa reflect changes in regional moisture budgets. Particularly transformative changes occurred in the last five centuries, associated with increased local biomass burning coeval with the arrival of Maa-speaking pastoralists and intensification of the ivory trade. Cereal crops occurred consistently from around 300 cal year BP, indicative of further anthropogenic activity. The study provides unique insight in Amboseli ecosystem history and the link between ecosystem drivers of change. Such long-term perspectives are crucial for future climate change and associated livelihood impacts, so that suitable responses to ensure sustainable management practices can be developed in an important conservation landscape

    A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania

    Get PDF
    Kilimanjaro is experiencing the consequences of climate change and multiple land-use pressures. Few paleoenvironmental and archeological records exist to examine historical patterns of late Holocene ecosystem changes on Kilimanjaro. Here we present pollen, phytolith, and charcoal (>125 ÎĽm) data from a palustrine sediment core that provide a 3000-year radiocarbon-dated record collected from a wetland near the headwaters of the Maua watershed in the alpine and ericaceous vegetation zones. From 3000 to 800 cal yr BP, the pollen, phytolith, and charcoal records show subtle variability in ericaceous and montane forest assemblages with apparent multicentennial secular variability and a long-term pattern of increasing Poaceae and charcoal. From 800 to 600 cal yr BP, montane forest taxa varied rapidly, Cyperaceae abundances increased, and charcoal remained distinctly low. From 600 yr cal BP to the present, woody taxa decreased, and ericaceous taxa and Poaceae dominated, with a conspicuously increased charcoal influx. Uphill wetland ecosystems are crucial for ecological and socioeconomic resilience on and surrounding the mountain. The results were synthesized with the existing paleoenvironmental and archaeological data to explore the high spatiotemporal complexity of Kilimanjaro and to understand historical human-environment interactions. These paleoenvironmental records create a long-term context for current climate, biodiversity, and land-use changes on and around Kilimanjaro

    A palaeovegetation and diatom record of tropical montane forest fire, vegetation and hydroseral changes on Mount Kenya from 27,000–16,500 cal yr BP

    Get PDF
    Fire is an important ecological disturbance in moist tropical forests influencing vegetation composition and structure. Contemporary and historical records of forest fires in mountain forests of Kenya are limited to the past decades and have a strong anthropogenic influence for ignition patterns and fire suppression activities. Palaeoenvironmental geoarchives provide the temporal depth to investigate long-term (multidecadal-to-millennial) changes in fire activity. Here we use a sediment record from the Rumuiku wetland, located in a volcanic crater on the eastern flank of Mount Kenya that was radiocarbon dated and analysed for diatom, pollen and charcoal subfossils to produce a highly resolved time series of local hydroclimatic change, vegetation, and fire; respectively. This study focuses on the time during and following the global Last Glacial Maximum, a time of rapid warming and changing regional hydroclimate with relatively stable atmospheric CO2 and not yet intensive anthropogenic modification of ecosystems. Charcoal and pollen data support associated changes in vegetation-fire centred around 21,500 cal yr BP when Afromontane forests with predominant abundances of Juniperus, Podocarpus and other montane forest trees changed to Hagenia-dominated forests that are relatively more open and adapted to burn more frequently but with less intense fires. These transitions in ecosystem composition, distribution and structure support the important role of fire in driving and maintaining forest composition in the watershed and contributing to the spatial complexity of forests around the mountain. These changes in composition, structure and biomass occurred during a time of rapid Late Pleistocene climate warming, regional hydroclimatic drying, and slowly rising atmospheric CO2 from 27,000 to 16,500 cal yr BP, during and following the conditions of the global Last Glacial Maximum. Temperature, hydroclimate and atmospheric CO2 are well-known drivers of montane vegetation change in the tropics and the role of fire is shown here to be a contributing driver to the spatial heterogeneity of forest patches at long time scales. Vegetation modelling at spatial scales relevant to land management and conservation should include retrospective evidence of the range of drivers of ecological disturbance regimes

    Late Holocene environmental change and anthropogenic: Ecosystem interaction on the Laikipia Plateau, Kenya.

    Get PDF
    East African ecosystems have been shaped by long-term socio-ecological-environmental interactions. Although much previous work on human-environment interrelationships have emphasised the negative impacts of human interventions, a growing body of work shows that there have also often been strong beneficial connections between people and ecosystems, especially in savanna environments. However, limited information and understanding of past interactions between humans and ecosystems of periods longer than a century hampers effective management of contemporary environments. Here, we present a late Holocene study of pollen, fern spore, fungal spore, and charcoal analyses from radiocarbon-dated sediment sequences and assess this record against archaeological and historical data to describe socio-ecological changes on the Laikipia Plateau in Rift Valley Province, Kenya. The results suggest a landscape characterised by closed forests between 2268 years before present (cal year BP) and 1615 cal year BP when there was a significant change to a more open woodland/grassland mosaic that continues to prevail across the study area. Increased amounts of charcoal in the sediment are observed for this same period, becoming particularly common from around 900 cal year BP associated with fungal spores commonly linked to the presence of herbivores. It is likely these trends reflect changes in land use management as pastoral populations improved and extended pasture, using fire to eradicate disease-prone habitats. Implications for contemporary land use management are discussed in the light of these findings
    corecore