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A B S T R A C T   

Fire is an important ecological disturbance in moist tropical forests influencing vegetation composition and 
structure. Contemporary and historical records of forest fires in mountain forests of Kenya are limited to the past 
decades and have a strong anthropogenic influence for ignition patterns and fire suppression activities. Palae-
oenvironmental geoarchives provide the temporal depth to investigate long-term (multidecadal-to-millennial) 
changes in fire activity. Here we use a sediment record from the Rumuiku wetland, located in a volcanic crater on 
the eastern flank of Mount Kenya that was radiocarbon dated and analysed for diatom, pollen and charcoal 
subfossils to produce a highly resolved time series of local hydroclimatic change, vegetation, and fire; respec-
tively. This study focuses on the time during and following the global Last Glacial Maximum, a time of rapid 
warming and changing regional hydroclimate with relatively stable atmospheric CO2 and not yet intensive 
anthropogenic modification of ecosystems. Charcoal and pollen data support associated changes in vegetation- 
fire centred around 21,500 cal yr BP when Afromontane forests with predominant abundances of Juniperus, 
Podocarpus and other montane forest trees changed to Hagenia-dominated forests that are relatively more open 
and adapted to burn more frequently but with less intense fires. 

These transitions in ecosystem composition, distribution and structure support the important role of fire in 
driving and maintaining forest composition in the watershed and contributing to the spatial complexity of forests 
around the mountain. These changes in composition, structure and biomass occurred during a time of rapid Late 
Pleistocene climate warming, regional hydroclimatic drying, and slowly rising atmospheric CO2 from 27,000 to 
16,500 cal yr BP, during and following the conditions of the global Last Glacial Maximum. Temperature, 
hydroclimate and atmospheric CO2 are well-known drivers of montane vegetation change in the tropics and the 
role of fire is shown here to be a contributing driver to the spatial heterogeneity of forest patches at long time 
scales. Vegetation modelling at spatial scales relevant to land management and conservation should include 
retrospective evidence of the range of drivers of ecological disturbance regimes.   

1. Introduction 

Fire is a key ecological process influencing vegetation distribution, 
composition and structure at centennial-to-millennial scales, and is 
influenced by climatic variability and interacts with local abiotic and 
biotic processes (Whitlock et al., 2010). Variability of fire causes 

vegetation change and is also itself varying in response to changing 
vegetation composition, structure and biomass (Archibald et al., 2013). 
Fire maintains some montane ecosystem types in eastern Africa moun-
tains, including montane forest ecotones; severe fires are known to 
regenerate monospecific stands of either Erica, Podocarpus, Juniperus, or 
Hagenia under different conditions (Wood, 1965; Lange et al., 1997; 
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Bussmann, 2001; Hemp and Beck, 2001; Young, 2004). Whether or not 
fire regime variability maintains a forest type, modifies ecotonal tran-
sitions, or facilitates or inhibits forest compositions is spatially complex 
and only a limited number of studies have focused on the role of fire 
disturbance ecology in Afromontane forests (Wesche et al., 2000; 
Wooller et al., 2000; Bussmann, 2002a; Hemp, 2005, 2006). The highly 
stochastic occurrence of fire makes it difficult to model with certainty at 
spatial scales smaller than biomes when fire return intervals are longer 
than multidecadal re-occurrences (Pfeiffer et al., 2013; Rabin et al., 
2017; Hantson et al., 2020). Current observational records and satellite 
monitoring of fires are useful for examining short-term patterns of fire 
regimes with return intervals of less than multidecadal scales and are 
limited to a temporal depth featuring a strong anthropogenic signal 
(Hempson et al., 2018; Henry et al., 2019; Johansson and Granström, 
2020). Sediment-based records provide retrospective analyses of 
multidecadal-to-millennial patterns of fire in tropical montane forests 
(Sánchez Goñi et al., 2017). A changing fire regime is one of the 
dominant ecological disturbances controlling forested ecotonal transi-
tions (Supplementary Fig. S1; Hemp and Beck, 2001; Gil-Romera et al., 
2019; Courtney Mustaphi et al., 2021) and contributes to the spatially 
heterogeneous vegetation distributions around the mountains of eastern 
Africa (Bussmann, 2002a; Hemp, 2005, 2006) including compositional 
and structural patchiness (Wood, 1965; Xu et al., 2016). Understanding 
how montane forests and fire regime variability have responded to the 
warming and varying hydroclimatic conditions following the Late 
Glacial Maximum (LGM; Marine Isotope Stage II), a time interval of 
rapid global climate change, provides quantitative mechanistic insights 
useful for comparing proxy data and climate and vegetation models 
(Hantson et al., 2016; Marlon et al., 2016). The forest compositions 
during late glacial and post-glacial interval provide a comparative 
context for how forests and fire regimes are currently changing rapidly 
on Mount Kenya (Bussmann, 1996; Gathaara, 1999; Ndegwa Gichuki, 
1999), neighbouring mountains (Hemp, 2005; Finch et al., 2017; Said 
et al., 2019) and across the tropics (Hantson et al., 2017; Probert et al., 
2019). 

The purpose of this study is to investigate past vegetation change and 
associated changes and influence of fire on the mountain forests of a 
mid-montane catchment on Mount Kenya. A sediment core was 
collected from Rumuiki wetland to analyse diatom composition, aquatic 
invertebrate remains (presence data), pollen composition, and total 
charcoal subfossils as proxy indicators of wetland hydrology, vegetation 
change, and fire activity during the Late Pleistocene (Fig. 1). The age- 
depth model presented a relatively linear sediment accumulation rate 
during the Late Pleistocene providing a temporal resolution rarely 
attainable in Afromontane sites (Rucina et al., 2009; Fig. 2). The com-
bination of pollen, charcoal and diatom data from Rumuiku is used to 
explore centennial-scale patterns of vegetation change, climate-fire- 
vegetation interactions, and local wetland conditions on this facet of 
the mountain in the context of global to regional scale changes in tem-
perature, hydroclimate, and atmospheric CO2 concentrations. Previous 
paleoenvironmental analyses of the sediment core provided radiocarbon 
dates, a pollen record, and pollen slide charcoal data (Rucina et al., 
2009) and here we re-use the radiocarbon and pollen data with new 
sieved charcoal (> 125 μm), aquatic invertebrate and diatom data. 

2. Background 

Previous studies using Quaternary pollen data show that mountain 
vegetation distribution patterns of eastern African underwent high 
turnover through the LGM (~23,000–19,000 cal yr BP; Hamilton, 1982; 
Van Zinderen Bakker and Coetzee, 1988). Responses were spatially 
complex (Barker et al., 2003; Bartlein et al., 2011; Tierney and deMe-
nocal, 2013) resulting in spatially heterogeneous vegetation distribution 
patterns along aspect and elevational gradients around Mount Kenya 
(Olago et al., 1999; Wooller et al., 2003; Street-Perrott et al., 2007) and 
neighbouring highlands (Jolly et al., 1997; Schüler et al., 2012; 
Marchant et al., 2018). Regional temperatures increased by an estimated 
4 ◦C following the LGM (Loomis et al., 2012; Annan and Hargreaves, 
2013) and the amount, distribution and seasonality of precipitation 
were altered by changing monsoonal patterns (Braconnot et al., 2007; 

Fig. 1. The study site location inset maps of A. Africa B. and in central Kenya. C. An oblique view perspective facing westward toward the eastern flank of central 
Mount Kenya showing approximately 2000 m asl to the Uhuru peak (5895 m) and vegetation biomes (Hedberg, 1951, 1955; Bussmann, 2002a) and D. a south-facing 
view of the Rumuiku volcanic crater wetland (0.118583◦S, 37.5611◦E; 2160 m asl; 8.9 ha; Rucina et al., 2009). Image date 9 February 2020 from Google Earth Pro 
version 7.3.3.7699 (64-bit) with 2.0× vertical exaggeration to show topographic relief (Google Earth/DigitalGlobe, 2021). 
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Konecky et al., 2014) and millennial scale moisture regimes were 
controlled by orbital variations (Verschuren et al., 2009; Wolff et al., 
2011). The spatiotemporal moisture patterns of equatorial mountains 
are complex, involving insolation, atmospheric circulation (Nicholson, 
2000; Hemp, 2009), lapse rates (Loomis et al., 2017), cloudiness and fog 
forest ecohydrology (Los et al., 2019; Cuní-Sanchez et al., 2019), soils 
and drainage, and the variability and gradients of each influence 
montane vegetation patterns. Atmospheric CO2 was relatively stable 
during the LGM and early postglacial interval until 17,000 cal yr BP 
(Petit et al., 1999) and subsequently contributed to changing vegetation 
assemblages across the region, including highlands (Jolly et al., 1997; 
Boom et al., 2002; Wooller et al., 2003), by modifying competition 
strategies among C3 and C4 plants. Following the LGM on eastern Afri-
can mountains, alpine glaciers generally retreated and montane vege-
tation re-expanded to higher altitudes (Coetzee, 1964; Hamilton, 1982; 
Van Zinderen Bakker and Coetzee, 1988). Forest composition was 
spatially complex as many individual plant taxa responded differently to 
changing climatic conditions. Several pollen and paleovegetation 
studies have been presented for Mount Kenya (listed in Courtney Mus-
taphi et al., 2017: Table 1) but vary in duration and forest ecosystems 
and few studies focus explicitly on the fire-vegetation feedbacks 
(Wooller et al., 2000; Ficken et al., 2002; Wooller et al., 2003). Across 
eastern Africa, most palaeofire studies present pollen slide charcoal data 
(Power et al., 2010; Hawthorne et al., 2017; Sánchez Goñi et al., 2017). 
Sieved charcoal studies have been presented from semi-arid lowland 
sites (Nelson et al., 2012; Colombaroli et al., 2018; Githumbi et al., 
2018a; Githumbi et al., 2018b) and a single montane palustrine site 
(Githumbi et al., 2021). The spatiotemporal complexity of fire- 
vegetation interactions has yet to be explicitly analysed and taken into 
account in pollen-based climate reconstructions for many biomes 
including those of eastern Africa (Bonnefille and Chalié, 2000) or within 
analyses of the role of atmospheric CO2 concentration in shaping 
montane vegetation distributions (Jolly and Haxeltine, 1997). This is 
partly due to the paucity of available palaeoenvironmental datasets for 

data-model comparisons (Marlon et al., 2016) and few fire-vegetation 
studies focused on catchment scale spatial areas with high temporal 
resolutions. 

During the LGM, the positioning of the East Africa monsoon was 
compressed due to atmospheric circulation during the high-latitude 
glaciations (Chiang and Bitz, 2005). Glaciers on Mount Kenya during 
the LGM covered up to 200 km2 and reached as low as 3300 m asl 
(Baker, 1967; Johansson and Holmgren, 1985; Mahaney, 1988; Rosqv-
ist, 1990; Young and Hastenrath, 1991). During the global LGM, Afro-
montane treelines were approximately 1000 m lower (Van Zinderen 
Bakker and Coetzee, 1988). Periglacial alpine tundra persisted at higher 
elevations below the glaciers, Ericaceous zones occupied upper-mid el-
evations, montane forests on the mid-lower more mesic slopes, and 
savanna-woodlands across the surrounding lowlands. Vegetation dis-
tributions responded to climatic variability and spatially heterogeneous 
local-scale factors (Mizuno, 1998, 2005; Zech, 2006; Mizuno and Fujita, 
2014; Montade et al., 2018) resulting in novel assemblages as ecosys-
tems did not, and do not (Platts et al., 2013), linearly shift across the 
elevation gradient (Coetzee, 1964; Hemp, 2006; Street-Perrott et al., 
2007). Orbitally driven climate variability resulted in regionally drier 
conditions (Moernaut et al., 2010) in response to changing circulation 
and ocean-atmosphere interactions as large-scale processes interacted 
with local environmental processes on the mountain resulting in 
catchment-scale vegetation variations (Street-Perrott et al., 2007; Ver-
schuren et al., 2009). Limnological and sedimentological changes were 
not coherent across aquatic ecosystems on Mount Kenya (Street-Perrott 
et al., 2007). C4 plants benefited from lower atmospheric CO2 concen-
trations, yet, CO2 variability was not a major interacting factor for 
mediating vegetation distributions on Mount Kenya (Ficken et al., 2002; 
Wooller et al., 2003; Street-Perrott et al., 2007) until increasing to over 
200 ppmv after 16,500 cal yr BP (Petit et al., 1999; Jolly and Haxeltine, 
1997). 

At present, the dominant mid-montane forest types occur over rela-
tively wide elevations and hydroclimatic ranges and, currently, Podo-
carpus is found around the mid-montane forests but occurs in high 
abundances in the northeastern and western forests, and Juniperus is 
locally abundant primarily in the rainshadow northwest area as well as 
smaller areas in the northeast (Bussmann and Beck, 1995a). The 
spatiotemporal abundance patterns of forest types vary around the 
mountain as well as with altitudinal hydroclimatic patterns and distur-
bance regimes. The upper montane forests at 2700 to 3300 m asl are 
dominated by Hagenia abyssinica (Lange et al., 1997) with Erica-domi-
nated forests and heathlands above 3000–3400 m asl (elevation varies 
around the mountain) up to the tundra zone. Temporal variability of 
ecological disturbance regimes modify ecosystem composition and 
structure and result in high spatial heterogeneity on the indigenous 
mountain forests within the protected areas (Bussmann and Beck, 
1995a; Bussmann, 2001, 2002a; Kleinschroth et al., 2013). Although 
Hagenia, Juniperus and Podocarpus co-occur at similar mid elevation 
temperature-moisture climate conditions (Niemelä and Pellikka, 2004; 
Zhou et al., 2018) and recruit in monospecific stands following fire, 
Hagenia germination rates are highest on bare soils following ecological 
disturbances that open surfaces and canopy (Bussmann, 2001). As the 
forest develops, Hagenia stands maintain wider intertree (bole) distances 
and are less dense lower and mid canopy (Bussmann, 2001; Grímsson 
et al., 2021). Recruitment is potentially inhibited by very frequent 
ground fires and high grazing pressure (Assefa et al., 2010). Fire appears 
to be an important disturbance among the dominant montane forest 
types (Schmitt, 1991; Bussmann and Beck, 1995b; Bussmann, 2002a, 
2002b), yet there are few sources of long-term evidence of how 
vegetation-fire interactions have occured around the mountain. Given 
that several montane forest types occur under similar climatic condi-
tions around the mountain, the spatial and temporal variability of fire 
may contribute to the heterogeneity of forest compositions and structure 
on the mountain. 

Fig. 2. An age-depth model produced using R scripts (R Development Core 
Team, 2015) Bacon version 2.2 (Blaauw and Christen, 2011a and b) using the 
IntCal13 radiocarbon curve (Reimer et al., 2013) and parameterized as shown 
in red text that used the 9 AMS radiocarbon dates (Rucina et al., 2009). Blue 
symbols represent the calibrated radiocarbon date probability distributions, the 
grey areas represent the probability densities of the Markov Chain Monte Carlo 
(MCMC) iterative random walks through the age probability distributions, and 
the dashed lines show the 95% confidence intervals. The dashed red line shows 
the weighted mean of all iterations. The lowermost radiocarbon date (SUERC- 
17200) was objectively rejected from the age-depth model; and was also 
rejected in the original study (Rucina et al., 2009). Core lithology with sediment 
types and legend (Troels-Smith, 1955) shown horizontally below the x-axis 
(Rucina et al., 2009). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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3. Study site 

Rumuiku is a small wetland in an extinct volcanic crater surrounded 
by montane forests near the Mount Kenya National Park boundary 
(geographical coordinates 0.118583◦ S, 37.5611◦ E; Fig. 1; Supple-
mentary Fig. S2) at 2160 m asl. This elevation was not glaciated during 
the Pleistocene. The crater is elliptical and approximately 350 × 200 m 
across and the crater wall is asymmetric with steeper walls on the south 
and west (Fig. 1, Supplementary Fig. S2). Rumuiku outflows eastward as 
a tributary of the Tana River. Currently, the local vegetation surround-
ing the wetland is disturbed montane forest at the edge of the Mount 
Kenya National Park (Kehlenbeck et al., 2011) with C. macrostachyus, 
Macaranga kilimandscharica and Neoboutonia macrostachys predominat-
ing and other primary montane forest taxa such as Podocarpus spp., 
Polyscias spp., Schefflera spp. and Tabernaemontana holstii and many 
others, with Syzygium cordatum and Morella salicifolia found near the 
wetland margin (Rucina et al., 2009). Wetland vegetation included 
tussock-forming species of Carex spp. with locally abundant Pennisetum 
mildbraedii and Sphagnum, similar to other volcanic highland wetlands of 
equatorial eastern Africa (Salt, 1954; Coetzee, 1967; Hamilton, 1982, 
1987; Githumbi et al., 2021). 

4. Materials and methods 

Fieldwork during 2005 recovered a 1469 cm deep core using a 
Russian peat corer with a 5 cm diameter by 50 cm long hemicylindrical 
chamber (Jowsey, 1966). The recovered core sections were wrapped in 
plastic and aluminium foil and stored in split PVC pipes in a refrigerator 
at 4 ◦C and analysed at the National Museums of Kenya, Nairobi, and the 
University of York, UK. Accelerator mass spectrometry radiocarbon 
dates (nine total, one rejected from age-depth model; Rucina et al., 
2009; Rucina, 2011) produced a nearly linear age-depth model through 
the Late Pleistocene glacial interval (27,000–16,500 cal yr BP) (Fig. 2; 
Table 1), a time when the site existed as a shallow lake surrounded by 
montane forest (Rucina et al., 2009). An age-depth model was generated 
using the R statistical computer language (R Development Core Team, 
2015) and Bacon version 2.2 scripts (Blaauw and Christen, 2011a and 
2011b). The age-depth model used nine AMS radiocarbon dates with the 
SUERC-17200 radiocarbon date being rejected as an outlier (Rucina 
et al., 2009) (Table 1). Radiocarbon ages were calibrated with the 
IntCal13 radiocarbon curve (Reimer et al., 2013) and expressed as 
calibrated calendar years BP (Before Present, calendar year 1950 CE). 
Because of the consistent linear sediment accumulation rates from 
27,000–16,500 cal yr BP (1469–500 cm stratigraphic depth), the site 
provides a unique opportunity for high-resolution analyses of climate- 
fire-vegetation interactions on Mount Kenya using subfossil pollen and 
charcoal as palaeoenvironmental proxy data. This study presents pre-
viously published radiocarbon dates (n = 9), core lithology, and sub-
fossil pollen data (n = 32; Rucina et al., 2009) with new subfossil diatom 

(n = 48) taken from different stratigraphic levels to the pollen, and 
continuously sampled charcoal data (n = 969) collected from the 
lacustrine sediments of the deeper stratigraphy (1469–500 cm). The 
sampling offsets between pollen and charcoal ranged from 0 to 19 cm (0 
to approximately 200 years of temporal offsets). The continuous char-
coal data provided co-located samples with pollen and diatom sub-
samples, respectively. 

Diatom analysis used 1 cm3 wet sediment subsamples extracted at 
~20 cm intervals (range 6–40 cm, n = 48) from 500 to 1460 cm core 
depth for chemical digestion preparation (Battarbee, 1986, 2000). 
Frustules were identified using published keys (Gasse, 1986; Krammer 
and Lange-Bertalot, 1986–1991; Reichardt and Lange-Bertalot, 1991; 
Lange-Bertalot, 1993; Lange-Bertalot and Moser, 1994; Lange-Bertalot 
and Metzeltin, 1996; Reichardt, 1997; Reichardt, 1999; Lange-Bertalot, 
2001; Krammer, 2000, 2002, 2003; Levkov, 2009; Hofmann et al., 2011) 
and enumerated to a minimum total count of 300–500 valves per sub-
sample under a Zeiss Axioscope A1 light microscope at 1000× magni-
fication with differential interference contrast (DIC). Diatom 
assemblages were expressed as relative abundances of total diatoms 
counted. Taxa were grouped as planktonic, facultative planktonic, and 
periphytic using ecological associations from Gasse (1986), Krammer 
and Lange-Bertalot (1986–1991) and Hofmann et al. (2011). 

Pollen analysis was previously reported by Rucina et al. (2009) and 
used wet sediment samples that were sequentially digested using HCl, 
KOH, HF, and acetolysis. The residue that remained was dehydrated and 
prepared with 95% ethanol (Fægri and Iversen, 1975). The chemically- 
digested residual was soaked in glycerol and a droplet was mounted on a 
microscope slide under a cover slip for identification under optical mi-
croscopy at 400× magnification. Pollen relative abundances were 
calculated using the total sum of terrestrial pollen and the relative 
abundance of aquatic taxa were calculated using the wetland taxa of 
Cyperaceae, Myriophyllum, Typha and Potamogeton, that influx locally 
into the sediments (Hamilton, 1982). 

Sieved charcoal analysis (Whitlock and Larsen, 2001; Conedera 
et al., 2009; Hawthorne et al., 2017) was undertaken at a contiguous 1 
cm thick sampling resolution (n = 969) using 1–3 cm3 subsamples of wet 
sediment and immersed for >24 h with sodium metaphosphate solution. 
Each subsample was wet sieved through a 125 μm mesh and the retained 
fraction was transferred to a gridded Petri dish (Bamber, 1982; Tsakir-
idou et al., 2021). Charcoal pieces were identified and tallied through 
visual inspection and manipulation with a metal probing needle under a 
Zeiss Stemi 2000-C optical stereomicroscope at 10-40× magnification 
(Hawthorne et al., 2017). Aquatic invertebrate remains (>125 μm) were 
also counted when coincidentally found in the sieved charcoal samples 
and are presented as presence data. Charcoal concentrations (pieces 
cm−3) were resampled to the median sampling interval of 10 years 
creating an even time series and converted to charcoal accumulation 
rates (CHAR; pieces cm−2 yr−1). 

Both diatom and pollen assemblage zones were separately delimited 

Table 1 
Age determinations for the Rumuiku wetland sediment core collected in 2005 CE (−55 cal yr BP) (Rucina et al., 2009; Rucina, 2011). BP, before present 1950 CE. 
Analytical radiocarbon dating error values are not rounded (sensu Stuiver and Polach, 1977) and presented as reported from the laboratories (SUERC, Scottish 
Universities Environmental Research Centre Radiocarbon laboratory, University of Glasgow, UK; Wk, Waikato Radiocarbon Dating Laboratory, University of Waikato, 
New Zealand). The lowermost radiocarbon date (SUERC-17200) was rejected from the age-depth model (Rucina et al., 2009).  

Depth (cm) Age (14C yr BP) error (± yr BP) δ13C Material Lab ID 
0 −55 0  Top of core Surface of sediments 
100 2252 30 −10.7 Bulk sediment SUERC-22553 
245 7763 40 −21.8 Bulk sediment SUERC-17195 
400 13,325 75 −23.1 Bulk sediment SUERC-22554 
545 13,953 59 −24.5 Bulk sediment SUERC-17196 
745 15,759 71 −29.8 Bulk sediment SUERC-17197 
945 17,296 85 −29.6 Bulk sediment SUERC-17198 
1145 19,578 111 −31.5 Bulk sediment SUERC-17199 
1400 22,016 180 −29.7 Bulk sediment WK-18792 
1465 19,006 112 −30.0 Bulk sediment SUERC-17200 
1469     Base of sediments  
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using stratigraphically constrained incremental sum of squares (CON-
ISS) technique (Grimm, 1987) and a broken stick plot indicated that 
three zones were significant (Bennett, 1996; Traverse, 2007; Legendre 
and Legendre, 2012). For diatoms, the rare taxa with <1% maximum 
relative abundance throughout the record were not included in the 
CONISS analysis (34 of 66 taxa; 51.5%). The pollen CONISS zones 
matched the prior analysis published by Rucina et al. (2009). 

5. Results 

5.1. Age-depth model 

The age-depth model developed for Rumuiku show a nearly linear 
accumulation rate of lacustrine sediments during the Late Pleistocene 
with a relatively high resolution median sedimentation rate of 10.3 
years cm−1 (range of 7.7–14.0 years cm−1) and a basal age estimate of 
27,000 cal yr BP (Fig. 2). A conspicuous change in sedimentation rates 
above 400 cm to the core top was related to a depositional environment 
change from organic rich lacustrine deposits to palustrine sediments 
close to the Pleistocene-Holocene transition (Rucina et al., 2009). This 
study focuses on the sediments from the base at 1469 cm to 500 cm 
(27,000–16,500 cal yr BP) to analyse the transition after the global LGM 
(Fig. 2). The average sampling interval for diatom analysis was 250 
years, 320 years for pollen analysis, and 10 years for macroscopic 
charcoal analysis. 

5.2. Diatom assemblage 

Diatom assemblages were quantified in 46 samples and a total of 66 
taxa were identified and 32 (48.5%) taxa occurred with ≥1% relative 
abundance (Fig. 3). Two of the 48 processed samples, at 796 cm and 
1360 cm depth, predominantly contained broken diatoms and assem-
blages could not be enumerated. The diatom assemblages throughout 
the core were characterised by abundant facultative planktonic and 
periphytic taxa. Generally, there are conspicuously low abundances of 
planktonic taxa throughout the record. Three significant diatom 
assemblage zones were identified through a CONISS analysis (Fig. 3; 
Table 2). 

5.2.1. Diatom zone A: 27,000–19,800 cal yr BP (1469–826 cm) 
The earliest zone was of the longest duration and was largely 

dominated by facultative planktonic taxa such as Fragilaria delicatissima 
(up to 90%) with subordinate Staurosira construens (up to 70%) and 
moderate abundances of A. granulata (25%). Prior to 26,000 cal yr BP, 
A. granulata, a planktonic species, was present in abundances of 2–30% 
then subsequently was only sporadically present in abundances up to 5% 

only in Zone A. Periphytic taxa were present with relative abundances 
>10% and included Gomphonema elegantissimum, Encyonopsis cf. sub-
minuta and E. minima that occurred the most frequently. The zone is 
punctuated by abrupt and short duration increases in periphytic taxa at 
the relative expense of facultative planktonic. A pronounced peak of the 
facultative planktonic A. minutissimum occurred at the top of the zone. 

5.2.2. Diatom Zone B: 19,800–18,800 cal yr BP (826–726 cm) 
Zone B was characterised by significant changes within the faculta-

tive planktonic taxa assemblages and a conspicuous absence of peri-
phytic taxa. Fragilaria tenera and F. capucina increased and 
F. delicatissima, Staurosira construens and Pseudostaurosira brevistriata 
decreased. The changes in facultative planktonic species occurred 
gradually over the 1000-year interval. The periphytic species Encyo-
nopsis cf. subminuta continued to be present throughout Zone B, albeit, at 
very low abundances <3%. Planktonic taxa were not present. 

5.2.3. Diatom zone C: 18,800–16,600 cal yr BP (726-500 cm) 
The uppermost diatom assemblage Zone C was marked by gradual 

increases in the relative abundances of periphytic taxa and significantly 
increased total periphytic diatoms, which increased to >50% total di-
atoms. Many rarer periphytic taxa became increasingly abundant in 
Zone C, such as, B. brebissonii, E. minor, Fragilaria gracilis and Navicula 
cryptotenella, which occurred with abundances up to 2%. The changes 
within the co-dominant facultative planktonic species were abrupt and 
prominent. F. delicatissima remained below 30% and S. construens 
(≤60%), Aulacoseira cf. distans (≤10%), and P. brevistriata (≤7%). 
F. tenera abruptly vanished from the high abundances found in Zone B. 

5.3. Vegetation and fire record 

The CONISS zonation of the pollen assemblage confirmed the pre-
vious pollen analysis (Rucina et al., 2009) analysis and identified four 
significant assemblage zones in the deeper sediments of Rumuiku. The 
assemblage consisted predominantly of montane forest taxa and Poa-
ceae with moderately abundant Ericaceae and Asteraceae (Fig. 4; 
Table 2). 

5.3.1. Pollen Zone I: 26,400-24,000 yr BP (1469–1210 cm) 
Pollen Zone I was dominated by Afromontane taxa that comprised 

~65% of the relative abundance of terrestrial taxa and included Podo-
carpus (≤40%), Juniperus (≤20%) and Olea (≤10%). Subordinate 
abundances of Alchornea (<6%) and Celtis (<2%) were also present 
(Fig. 3). Ericaceous taxa totalled (≤13%) and was dominated by Stoebe 
(<13%) and Erica increased from <1–3%. Woodland taxa were scarce 
throughout this zone (<1%). Herbaceous taxa comprised 20–30% of the 

Fig. 3. Relative abundances of diatom taxa grouped by ecological types for the time interval of 27,000–16,500 cal yrs. BP (Gasse, 1986; Krammer and Lange- 
Bertalot, 1986–1991; Hofmann et al., 2011). Assemblage zones were derived using stratigraphically constrained incremental sum of squares (CONISS) technique 
and a broken stick plot indicated that three zones were significant (Grimm, 1987; Bennett, 1996; Legendre and Legendre, 2012). Rare taxa with <1% maximum 
relative abundance (34 taxa; 51.5%) throughout the record were not included in CONISS analysis. Taxa with a maximum relative abundance of ≥1% are shown. 

C.J. Courtney Mustaphi et al.                                                                                                                                                                                                                



Palaeogeography, Palaeoclimatology, Palaeoecology 581 (2021) 110625

6

total terrestrial pollen and Poaceae (~15%) consistently dominated. 
Umbelliferae decreased from 1 to 2%. There were few aquatic taxa in 
this zone but Cyperaceae pollen was consistently observed and likely 
originated from plants that fringed the wetland. 

The range of variability of charcoal concentrations (Fig. 3) and 
charcoal accumulation rates (CHAR) was highest in Zone I (5–70 pieces 
cm−2 yr−1) (Fig. 5). The qualitative baseline low frequency variability of 
CHAR generally had values of 5–7 pieces cm−2 yr−1 and decreased 
overall throughout the zone. CHAR values conspicuously peaked then 
subsequently decreased over several centuries before a subsequent 
abrupt increase. This interval showed the lowest CHAR values of the 
record (Fig. 5). 

5.3.2. Pollen Zone II: 24,000-21,000 yr BP (1210–970 cm) 
Afromontane taxa continued to dominate and comprised ~65% of 

the relative abundance of terrestrial taxa; although throughout the zone 
the abundance decreased to ~55% (Fig. 3). Taxa were dominated by 
Podocarpus (≤40%) but decreased throughout the zone to <30%, Juni-
perus (≤20%) and Olea (≤10%). Subordinate abundances of Alchornea 
(<6%) and Celtis (<2%) were also present. At 24,000 cal yr BP, Juniperus 
abruptly decreased and Polyscias, Ilex and Schefflera increased. This zone 
was marked by the last observations of Alchornea and Macaranga. 

Myrsine (Rapanea) was not found in this zone. Ericaceous taxa abun-
dances ranged from 2 to 18% and were dominated by Stoebe (<13%) and 
Artemisia increased to 5% in Zone II. Woodland taxa continued to be 
scarce (<1%) and the earliest observation of Syzygium occurred at 
24,000 cal yr BP. Similar to pollen Zone I, the herbaceous taxa 
comprised 20–30% of the total terrestrial pollen and Poaceae abun-
dances were consistently ~15%. Cyperaceae dominated the aquatic 
taxa. CHAR values were generally high during Zone II and averaged 11 
pieces cm−1 yr−2 but decreased stepwise throughout the zone. 

5.3.3. Pollen Zone III: 21,000-17,500 yr BP (970–610 cm) 
Afromontane taxa dominated but had decreased to 55% total 

terrestrial pollen. Juniperus, Podocarpus, and Olea remained dominant. 
Podocarpus continued to gradually decrease (25–20%), Hagenia abruptly 
increased from 2 to 15% and remained the dominant taxa. Polyscias, 
Celtis and Myrsine (Rapanea) were present at subordinate abundances. 
Woodland abundance remained low 0–4% and composition remained 
unchanged with the exception of presence (1%) of Canthium from 
21,500–19,000 yr BP. Ericaceous abundances were consistently 5–12% 
of the terrestrial pollen and compositions were stable, although Stoebe 
steadily decreased and was absent by the end of the zone. Herbaceous 
abundances were moderate (20–32%) and dominated by Poaceae 

Table 2 
Summary of results and interpretation of diatom, pollen and charcoal data at Rumuiku.  

Age 
(cal yr 
BP) 

Diatom zone Diatom description Diatom interpretation Pollen zone Pollen description Biomass burning Vegetation 
interpretation 

16,500 Rum C 
726–500 cm 
18,800–16,621 
yr BP 

Dominated by 
Staurosira construens 
with subordinate 
C. placentula, E. sorex, 
Gomphonema 
elegantissima, 
Encyonopsis subminuta 
and E. minima. 

Shallower water likely, 
possibly nitrogen 
limited (higher 
abundance of 
Epithemias) and 
eutrophic as evidenced 
by C. placentula. The 
species present were 
probably living within 
macrophytes. 

RUM IV 
610–380 cm 
17,500–15,500 
yr BP 

Afromontane taxa. 
Hagenia, Polyscias, 
Podocarpus, Schefflera. 
Juniperus down, 
Rapanea up. Secondary 
forest taxa present. 
Continued increase 
Poaceae and aquatic 
Cyperaceae. Ericaceous 
taxa begin to decrease. 

Charcoal low with 
low variability. 

Hydroseral succession, 
increases in aquatic 
taxa. Charcoal 
variability reduced and 
Poaceae increases 
significantly. 
Afromontane taxa 
decrease as woodland 
taxa increase. May 
signify change to less 
intense fires and lower 
forest biomass. 

17,000 

17,500 RUM III 
970–610 cm 
21,000–17,500 
yr BP 

Juniperus, Podocarpus, 
Hagenia high. 
Afromontane taxa 
present and drier 
woodland taxa begin to 
increase. Non-arboreal 
taxa, Artemisia, 
Poaceae, Asteraceae 
stable, Stoebe 
decreased. 

Charcoal generally 
low, with some 
abrupt increases 
and subsequent 
decreases over 
subsequent 1000 
years. 

Juniperus and lower 
montane taxa increase; 
Afromontane taxa 
remain, Ericaceous taxa 
moderate except Stoebe 
suggesting changes to 
high elevation taxa. 
Charcoal lowest at 
21000 cal yr BP 
concomitant with 
regional hydroclimatic 
change. Forest biomass 
may have been lowest 
during this time. 

18,000 
18,500 
19,000 Rum B 

826–726 cm 
19,800–18,800 
yr BP 

Dominated by 
F. delicatissima and 
S. construens with 
increased F. tenera 
toward the top of the 
zone (up to 80%). 

Fluctuations in water 
level likely represented 
by changed proportions 
from taxa with needle- 
like morphologies 
(deeper water) to small 
ovate (shallower water) 
and represented the 
species sensitivity to 
light. 

19,500 

20,000 Rum A 
1469–826 cm 
26,826–19,800 
yr BP 

Dominated by 
F. delicatissima (up to 
90%) with 
subordinate 
S. construens (up to 
70%) and notable 
presence of 
A. granulata (25%). 

Deeper water allowed 
planktonic species to 
live and longer, needle- 
like species thrived. 
S. construens probably 
represented a pioneer 
species and A. granulata 
suggested eutrophic 
waters. 

20,500 
21,000 RUM II 

1210–970 cm 
24,000–21,000 

Juniperus and 
Podocarpus dominant 
and covary. 
Afromontane taxa 
present but not 
abundant. Ericaceous 
taxa abundant. 
Woodland taxa 
negligible. Poaceae 
abundant and stable. 

Charcoal is highly 
variable and 
decreases 
throughout. 

Afromontane and 
Ericaceous taxa 
dominate and stable 
throughout. Forest 
density may be highest 
and biomass may have 
been an important 
contributor to fire 
activity. 

21,500 
22,000 
22,500 
23,000 
23,500 

24,000 RUM I 
1469–1210 cm 
26,430–24,000 

Afromontane taxa 
dominate, Podocarpus, 
Juniperus. Nonarboreal 
taxa, Asteraceae, 
Stoebe, Artemisia 
abundant. Poaceae 
abundant and stable. 
Few aquatic taxa. 

Charcoal 
accumulation 
peaks and then 
decreases over 
millennial scales. 

Afromontane forest 
with abundance of 
Ericaceous taxa and 
Juniperus, high forest 
biomass with intense 
fires. 

24,500 
25,000 
25,500 
26,000 
26,500  
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(15–30%) and Asteraceae (2–10%). Cyperaceae continued to be the 
consistent predominant aquatic taxa. 

CHAR was low in Zone III and averaged 3.8 pieces cm−2 yr−1 and the 
low frequency variability was very low yet increased slightly throughout 

the zone. The long-term trend in the charcoal data remained important 
while short-term intervals were intermittently important and 
significant. 

Fig. 4. Relative abundances of selected terrestrial pollen taxa grouped by functional types for the time interval of 27,000–16,500 calibrated years BP (Rucina et al., 
2009). Taxa with a maximum relative abundance of ≥1% are shown. Aquatic taxa is presented as a relative abundance of aquatic taxa sum only. Zones delimited by 
CONISS and a broken stick test of the sum of squares (Grimm et al., 1987; Bennett, 1996; Legendre and Legendre, 2012). The full late Pleistocene to Holocene pollen 
record is presented in Rucina et al. (2009) and Rucina (2011). 

Fig. 5. Palaeovegetation change at Rumuiku and regional environmental change. The periphytic diatom abundances and presence data of aquatic invertebrates track 
the shallowing of the lake and wetland establishment. Biotic palaeovegetation indicators from Rumuiku (2160 m asl; at left and center) and abiotic environmental 
controls of vegetation change (at right) over the 27,000–17,000 cal yr BP time interval showing concomitant changes between 21,000–20,000 cal yr BP. Charcoal 
accumulation rates (CHAR) and wavelet spectrum. Pollen zones delineated through CONISS (Supplementary Fig. 4) and relative abundances of selected key Montane 
Forest taxa: Hagenia, Podocarpus, and Juniperus, and Poaceae and Ericaceae (Rucina et al., 2009). First principal component axis scores of pollen and charcoal data as 
an indicator of fire associated taxa (note the reversed x-axis). 
A mid-montane elevation temperature reconstruction with error estimates (red and grey lines) using sediments from Sacred Lake (2350 m asl), Mount Kenya (Loomis 
et al., 2012) and a qualitative lake level reconstruction from Lake Challa representing regional eastern African hydroclimatic variability (blue line; Moernaut et al., 
2010) and the sieved charcoal from Lake Challa (Nelson et al., 2012). Global atmospheric CO2 measured from the Vostok ice core, Antarctica (green line; Petit et al., 
1999). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5.3.4. Pollen Zone IV: 17,500-15,500 yr BP (610–380 cm) 
Poaceae increased from 30 to 50% relative abundance and increased 

continuously until 15,500 yr BP (not presented here; see Rucina et al., 
2009). Total Afromontane pollen abundances steadily decreased 
(50–15%) but at different rates for each taxon as Juniperus decreased to 
minor values and Podocarpus continued a gradual decline to <20%. 
Ericaceous abundance decreased overall and ranged from 2 to 20%. 
Artemisia increased while Erica decreased. Woodland abundance was 
<1–2% with notable consistent presence of Allophylus, Dombeya, 
Euphorbia, (each <2%) and Rubiaceae (<15%). Cyperaceae were the 
dominant aquatic taxa. 

CHAR remained low in Zone IV (averaged 5.5 pieces cm−2 yr−1), 
CHAR peaks were much lower than in each of the previous zones, and 
the low frequency variability amplitude was low, yet continued to in-
crease from 4 to 7 pieces cm−2 yr−1 throughout the zone. 

6. Discussion 

Significant CONISS zones delimited for the diatom and pollen as-
semblages showed slight temporal offsets (Figs. 3 and 4; Table 2) and 
suggested that local catchment vegetation and within-lake ecosystems 
responded differently to the long-term glacial-interglacial 

Fig. 6. Summary landscape diagram of Rumuiku on the eastern flank of Mount Kenya. Changes to vegetation and fire in the Rumuiku catchment prior to 21,500 cal 
yr BP and afterwards, and the conditions at present (2020 CE) are shown for comparison. Pollen taxa are associated with broad forest types and silhouettes represent 
the tree physiognomy and vegetation structure. Fires are represented with flame symbols among the vegetation zones where larger fires are more intense and severe 
and smaller flames where fires are less intense, less severe, but more frequent that are associated with Poaceae, Ericaceous, and Hagenia forests. 
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environmental variability that included climatic warming, fire activity, 
and limnological fluxes of sediments, C and N (Street-Perrott et al., 
2007). The major vegetation change occurred at 21,500 cal yr BP when 
Hagenia increased in abundance within the local mid-montane forest 
with a concomitant decrease in charcoal that indicated a changing 
vegetation-fire relationship (Fig. 6). Published fire ecology studies of 
observed disturbances of these forest types have noted that Juniperus and 
Podocarpus forests experience infrequent (multidecadal-to-centennial 
scale), stand-replacing fires; whereas, Hagenia forests experience less 
severe fire types at higher burn frequencies and have a relatively more 
open forest structure (Wesche et al., 2000; Bussmann, 2002a). In sum-
mary, the results from the study site track published evidence of 
changing regional hydroclimate, montane vegetation change and fire 
activity prior to the global increase in atmospheric CO2 toward the end 
of the Late Pleistocene postglacial, which later contributed to modifying 
plant compositions and distributions (Jolly and Haxeltine, 1997; Boom 
et al., 2002; Ficken et al., 2002; Wooller et al., 2003). 

6.1. Diatoms, invertebrates and hydroseral succession 

The ecosystem was dominated by periphytic taxa throughout and 
represented a slow succession over the millennia that documented the 
hydroseral transition from a shallow lake to a wetland (Figs. 3 and 5; 
Mavuti, 1981; Mavuti, 1992) and the site remained palustrine to present 
(Rucina et al., 2009). In shallow lakes, periphytic taxa can be detached 
from sediment and plant surfaces and found within the plankton 
(tychoplankton). A. minutissimum is one of the most common diatoms in 
many environments. It is attached to substrates by short stalks and cells 
can grow on top of each other (Krammer and Lange-Bertalot, 
1986–1991). All Gomphonema species are attached with stalks, some 
short, some very long. Stenopterobia delicatissima is not attached. ong, 
thin Fragilaria taxa predominates the assemblages over much of the re-
cord. F. delicatissima is mostly planktic, but does also occur as epiphytic. 
It is light sensitive and may indicate deeper water in the lake. There 
might be an exchange of diatom frustules from the periphyton into the 
open water rather than these taxa really growing in the open water. It is 
likely that Rumuiku existed as a shallow lake with several diatom taxa 
that are facultative periphytic and/or planktonic with some taxa 
potentially attached to aquatic vegetation, namely Cyperaceae and hy-
dric Poaceae taxa. Diatom zone C contained less planktonic and more 
periphytic taxa and indicates that the lake became shallower and the 
littoral zone would have expanded with more habitat space for aquatic 
plants and attachment area for epiphytic diatoms. The presence of taxa 
with N-fixing cyanobacteria as symbionts, such as E. sorex, may suggest 
that the system was N limited or at least close to N limitation (Krammer 
and Lange-Bertalot, 1986–1991). E. sorex also suggests a shallower 
water column (Gasse, 1986). C. placentula is an often epiphytically 
growing species, which is tightly attached to surfaces. 

The diatom assemblage zones divided the record into three time 
intervals (Fig. 3). Zone A had abundant facultative planktonic and 
periphytic taxa and suggested a shallow lake ecosystem and the subzone 
between 25,500 and 23,000 yr BP appeared to be a moderately distinct 
assemblage found in a single sample with abundant Gomphonema ele-
gantissimum, G. cf. rhombicum, and Reimeria sinulata (Fig. 3). Zone B is a 
short (1000-year) interval of varying abundances of facultative plank-
tonic taxa and a conspicuous reduction of periphytic taxa concomitant 
with a reduction in Cyperaceae and Myriophyllum pollen and increased 
Typha (Fig. 4). These changes could have been promoted by hydrologic 
stabilization in littoral areas by the continued sediment infilling of the 
wetland and subsequent water shallowing or nutrient availability 
changes (Hamilton and Taylor, 1986; Woo and Zedler, 2002) or both 
because these environmental changes can benefit Typha (Bansal et al., 
2019). Observations of Typha expansion, and dominance, has been 
associated with rapid sedimentation rates in other wetlands of eastern 
Africa (Hamilton, 1982: p262) and Typha is present in many montane 
wetlands usually with relatively high pH (Lind, 1956; Hamilton, 1982: 

p99). Previous analyses of montane lacustrine-palustrine sediment 
hydroseral sequences in eastern Africa have mainly focused on lithology 
and pollen data (Hamilton and Taylor, 1986) and there have been 
relatively few analyses that use aquatic invertebrate remains. The 
aquatic invertebrate remains observed during continuous charcoal 
analysis also support the succession of the aquatic ecosystem from a 
permanent shallow lake to a wetland when Daphnia ephippia (no eggs 
inside) were observed during the permanent lake phase, and continued 
to shallow with bryozoan statoblast remains consistently observed 
during 20,000–19,000 cal yr BP, and more oribatid mites during the 
wetland phase when more wetland vegetation established and peri-
phytic diatoms increased (Fig. 5). The increased concentrations of 
oribatid mites in the upper zones of Rumuiku may relate to altered 
littoral conditions or be derived from the surrounding soil organic litter 
layer in the wetland and catchment area (Knoepp et al., 2000; Solhøy, 
2001; Gergócs and Hufnagel, 2009; Fig. 5). 

6.2. Vegetation and forest fires 

The earlier half (27,000–21,500 cal yr BP) of the vegetation record 
from Rumuiku suggested that the site was surrounded by dense, moist 
Afromontane forests with high abundances of Juniperus and Podocarpus 
that have a fire ecology that benefits from long intervals between severe 
fires, which may have resulted in the generally higher CHAR values 
(Figs. 4 and 5). These taxa occur over a wide hydroclimatic range and 
Podocarpus is found around the mid-montane forests. Juniperus is more 
abundant with slightly drier conditions (Bussmann and Beck, 1995a). 
Long-term changes in Juniperus pollen abundances at Rumuiku may 
reflect changing hydroclimatic variability by either a reduction in the 
amount of precipitation or changing contrast between wet-dry season-
ality (drier dry seasons). Both taxa benefit from stand-replacing fires at 
longer fire return intervals (multidecadal-to-centennial scale) in order to 
establish and grow to mature stands (Bussmann, 2002a). Hagenia 
abundances had already increased by 22,000 cal yr BP at Lake Rutundu 
(3078 m asl) coincident with changes in the Poaceae taxa assemblages 
(Wooller et al., 2003) suggesting that fire regimes were changing across 
the moist montane forest zones around Mount Kenya, at least on the 
windward western slopes of the mountain. The influence of CO2 in-
creases and other effects cannot be disentangled from the effects of fire 
regimes alone and the potential for a drier interval on the mountain 
based grass cuticle, phytolith and charcoal evidence from the Lake 
Rutundu sediment record from 25,000 to 13,400 cal yr BP (Wooller, 
1999; Wooller et al., 2003). From 21,500–16,500 cal yr BP, the persis-
tent lower intensity fires and likely more frequent fire regime promoted 
conditions that contributed to a reduction in the Afromontane taxa and 
maintenance of relatively more open Hagenia-Poaceae vegetation on the 
mountain facet surrounding Rumuiku and consistently lower CHAR 
(Fig. 5). 

The decreased charcoal accumulation rates after 21,500 cal yr BP 
suggest a transition from the dense Montane Forests to the relatively 
more open Hagenia dominated composition of forests around Rumuiku 
and maintaining these forests at least 16,500 cal yr BP. The changed fire 
regime, burning forests with lower tree densities at likely more frequent 
time intervals; yet with lower fuel loads and lower charcoal production 
due to the decreased biomass, was an important factor in maintaining 
Hagenia-Poaceae over other Montane Forest taxa (Fig. 5). Both Podo-
carpus and Juniperus require longer fire return intervals and more severe 
fires to compete as dominant tree taxa (Bussmann, 2001, 2002a, 2002b). 
At 19,000 cal yr BP and afterward, Poaceae increased and both Podo-
carpus and Juniperus decreased as the regional hydroclimate continued 
to warm and dry (Figs. 4 and 5; Loomis et al., 2017). At higher eleva-
tions, periglacial conditions continued to ameliorate and Ericaceous 
cover expanded uphill above Rumuiku catchment, peaking around 
20,000 cal yr BP and slowly decreasing to 16,000–13,000 cal yr BP 
(Wooller et al., 2003; Rucina et al., 2009). Regionally, the palae-
oenvironmental records of vegetation and fire on highlands of Kenya 
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and Tanzania show apparent spatial heterogeneity (Van Zinderen Bak-
ker and Coetzee, 1988) with several study sites suggesting local changes 
in vegetation and fire around 21,000–20,000 cal yr BP (Fig. 7). This 
suggests complex climate-vegetation-fire interactions across the region 
and the importance of regional and local spatial environmental condi-
tions influencing Montane Forest vegetation and fire regimes prior to 
significant and intensive anthropogenic modifications of mountain 
forests. 

7. Conclusions 

These new palaeoenvironmental data document the importance of 
the role of fire in long-term vegetation change in the moist montane 
forest ecosystems on Mount Kenya during a time with little to no known 
evidence of anthropogenic modifications. The data suggest climate-fire- 
vegetation are temporally complex. The comparison with other pub-
lished records supports some broad similarities yet spatial complexity in 
montane forest vegetation and disturbance interactions suggesting that 
the ecological role of fire and other local-scale factors potentially 
contribute to spatial patterns. As in other mountainous areas of eastern 
Africa (Hemp, 2006; Verschuren et al., 2009), these were not solely 
linear elevation shifts of plant distribution in response to climate change 
but were complex interactions of local (disturbance regimes, competi-
tion, soils, topographic complexity) and large-scale processes (atmo-
spheric CO2 and moisture-vegetation ecohydrology). Currently there are 
several pressures modifying the forests of Mount Kenya and these forest 
palaeoenvironmental and disturbance pattern results provide long-term 
context on vegetation and fire activity changes for mid-montane forest 
patches and facets of Mount Kenya. 
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