674 research outputs found

    Hall Effect in the coma of 67P/Churyumov-Gerasimenko

    Get PDF
    Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic filed regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.Comment: 23 pages, 6 figur

    Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum

    Get PDF
    <div><p>Protein SUMOylation regulates multiple processes involved in the differentiation and maturation of cells and tissues during development. Despite this, relatively little is known about the spatial and temporal regulation of proteins that mediate SUMOylation and deSUMOylation in the CNS. Here we monitor the expression of key SUMO pathway proteins and levels of substrate protein SUMOylation in the forebrain and cerebellum of Wistar rats during development. Overall, the SUMOylation machinery is more highly-expressed at E18 and decreases thereafter, as previously described. All of the proteins investigated are less abundant in adult than in embryonic brain. Furthermore, we show for first time that the profiles differ between cerebellum and cerebrum, indicating differential regional regulation of some of the proteins analysed. These data provide further basic observation that may open a new perspective of research about the role of SUMOylation in the development of different brain regions.</p></div

    Four‐fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov‐Gerasimenko near perihelion

    Get PDF
    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov‐Gerasimenko (CG), the target of the European Space Agency’s Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3‐D four‐fluid model, which is based on BATS‐R‐US (Block‐Adaptive Tree Solarwind Roe‐type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion‐electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination‐driven neutral gas outflow, and comet CG with a realistic shape model and illumination‐driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination‐driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.Key PointsA 3‐D coupled neutral gas and multifluid plasma model for a comet is developedFormation of nightside magnetic pileup region is foundNucleus directed plasma flow inside the nightside reconnection region is foundPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146285/1/jgra52592_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146285/2/jgra52592.pd

    Self‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere

    Get PDF
    The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self‐consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.Key PointsFirst multifluid MHD simulation of Europa's plasma interaction presentedMatches plasma and magnetic field observations during Galileo E4 and E26 flybysPlasma flow and temperatures different for magnetospheric and pick up ionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111914/1/jgra51773.pd

    Evaluation of catheter-induced tribological damage to porcine aorta using infra-red spectroscopy

    Get PDF
    © 2016 Elsevier Ltd Studies were carried out to assess the potential of attenuated total internal reflection Fourier transform infrared (ATR)-FTIR spectroscopy as a tool for evaluating mechanical-tribological damage to the blood vessel wall occurring during simulated endovascular catheterization on fresh ex-vivo porcine aortic tissue. It is envisaged that this method could be used in laboratory tests to quantitatively compare catheters or catheterization approaches with regard to their effect on damage to the aorta wall. Tribological damage was induced on the tissue. Obvious changes were visible in the FTIR spectra as well as the friction coefficient as a function of increasing damage. In particular, the spectral changes due to damage to the outermost layer of the tissue were significant, provided appropriate sample conditioning was performed. These changes, which correlated with a reduction in friction coefficient, can be attributed to the removal of successive layers of tissue as a result of a wear process. In conclusion, FTIR spectroscopy was found to be a reliable and effective measurement technique for quantifying catheter-induced tissue damage, allowing very repeatable spectra to be obtained from the tissue up to 36 h after excision with no major spectral changes observed during this time frame due to tissue age

    Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    Get PDF
    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes

    Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice

    Get PDF
    Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma

    Personalized Pathway Enrichment Map of Putative Cancer Genes from Next Generation Sequencing Data

    Get PDF
    BACKGROUND: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data. METHODOLOGY: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The empirical P value obtained then provides an adjusted statistical evaluation. PRINCIPAL FINDINGS/CONCLUSIONS: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the weighted resampling method performs as well as the standard methods for significant pathways with strong evidence. Importantly, our method could effectively reject many marginally significant pathways detected by standard methods, including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases, pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and methylation) that have similar bias problems
    corecore