40 research outputs found

    Corrosion, tribology and tribocorrosion research in biomedical implants : progressive trend in the published literature

    Get PDF
    There has been significant progress in implant research during last the 10 years (2005–2015). The increase in the elderly population coupled with a lack of proper physical activity is a potential cause for the sudden increment in implant usage. Implant life and performance are influenced by several parameters; however, literature showed that corrosion, tribology, and tribocorrosion processes of implant materials are main concern and driving mechanisms in the degradation processes. There is currently a large need for research in this area. Furthermore, there has been no recent systematic literature review to analyze the progress of research and published work in this area. The objective of this work is to provide a trend in the published articles in the area of corrosion, tribology, and tribocorrosion during last century, with emphasis on the progress over the last 10 years. The paper also tries to report the current state-of-the-art research in the area of corrosion, tribology, and tribocorrosion research in bio-implants based on number of published articles. The reviews demonstrate that during the last 10 years, there has been significant progress in implant research, particularly in the tribocorrosion area, however, significantly lower than tribology and corrosion research

    Fretting Corrosion Behavior of Additive Manufactured and Cryogenic-Machined Ti6Al4V for Biomedical Applications

    Get PDF
    Metal ion release, caused by synergistic effect of wear and corrosion, is one of the major concerns related to the prostheses lifetime. In this work, samples of additive manufactured Ti6Al4V are machined under dry cutting and cryogenic cooling conditions and their performances in terms of corrosion and fretting corrosion response are investigated. A wet and temperature-controlled apparatus equipped with an electro-chemical cell is designed and set-up in order to evaluate the fretting corrosion effect acting at the interfaces. The obtained results show that the cryogenic machining improves the corrosion and fretting corrosion behavior of the investigated additive manufactured Ti6Al4V

    Mechanically assisted electrochemical degradation of alumina-TiC composites

    Get PDF
    Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment

    Tribology of Medical Devices

    Get PDF
    Importance of tribology in a number of medical devices and surgical instruments is reviewed, including artificial joints, artificial teeth, dental implants and orthodontic appliances, cardiovascular devices, contact lenses, artificial limbs and surgical instruments. The current focus and future developments of these medical devices are highlighted from a tribological point of view, together with the underlying mechanisms

    Tribocorrosive behaviour of commonly used temporomandibular implants in a synovial fluid-like environment: Ti-6Al-4V and CoCrMo

    No full text
    The temporomandibular joint implant metal alloys, Ti6Al4V and CoCrMo, (n = 3/group) were tested under free-potential and potentiostatic conditions using a custom-made tribocorrosion apparatus. Sliding duration (1800 cycles), frequency (1.0 Hz) and load (16 N) mimicked the daily mastication process. Synovial-like fluid (bovine calf serum, pH = 7.6 at 37 °C) was used to simulate the in vivo environment. Changes in friction coefficient were monitored throughout the sliding process. Changes in surface topography, total weight loss and roughness values were calculated using scanning electron microscopy and white-light interferometry. Finally, statistical analyses were performed using paired t-tests to determine significance between regions within each metal type and also independent sample t-tests to determine statistical significance between metal alloy types. Ti6Al4V demonstrated a greater decrease of potential than CoCrMo, a higher weight loss from wear (Kw = 257.8 versus 2.62 Όg; p \u3c 0.0001), a higher weight loss from corrosion (Kc = 17.44 versus 0.14 Όg; p \u3c 0.0001) and a higher weight loss from the combined effects of wear and corrosion (Kwc = 275.28 versus 2.76 Όg; p \u3c 0.0001). White-light interferometry measurements demonstrated a greater difference in surface roughness inside the wear region in Ti6Al4V than CoCrMo after the sliding (Ra = 323.80 versus 70.74 nm; p \u3c 0.0001). In conclusion, CoCrMo alloy shows superior anti-corrosive and biomechanical properties. © 2013 IOP Publishing Ltd

    Optimization of anodization and annealing condition enhances TiO \u3c inf\u3e 2 nanotubular surface hydrophilicity

    No full text
    In this study anodization and annealing condition are optimized to fabricate nanotubular surface which is able to maintain its hydrophilicity over time - anti-aging surface. Our results indicate that anodization voltage and annealing temperature affect surface ability to maintain its hydrophilicity. Water contact angle measurements show hydrophilicty is sharply decreased after annealing regardless of annealing and anodization conditions. Non-anodized and 20 V anodized samples lose their hydrophilicity after 11 days of aging in air, while 60 V anodized samples are able to maintain their hydrophilicity after this period
    corecore