186 research outputs found
Recommended from our members
Diamond power devices: state of the art, modelling, figures of merit and future perspective
Abstract: With its remarkable electro-thermal properties such as the highest known thermal conductivity (~22 W cm−1∙K−1 at RT of any material, high hole mobility (>2000 cm2 V−1 s−1), high critical electric field (>10 MV cm−1), and large band gap (5.47 eV), diamond has overwhelming advantages over silicon and other wide bandgap semiconductors (WBGs) for ultra-high-voltage and high-temperature (HT) applications (>3 kV and >450 K, respectively). However, despite their tremendous potential, fabricated devices based on this material have not yet delivered the expected high performance. The main reason behind this is the absence of shallow donor and acceptor species. The second reason is the lack of consistent physical models and design approaches specific to diamond-based devices that could significantly accelerate their development. The third reason is that the best performances of diamond devices are expected only when the highest electric field in reverse bias can be achieved, something that has not been widely obtained yet. In this context, HT operation and unique device structures based on the two-dimensional hole gas (2DHG) formation represent two alternatives that could alleviate the issue of the incomplete ionization of dopant species. Nevertheless, ultra-HT operations and device parallelization could result in severe thermal management issues and affect the overall stability and long-term reliability. In addition, problems connected to the reproducibility and long-term stability of 2DHG-based devices still need to be resolved. This review paper aims at addressing these issues by providing the power device research community with a detailed set of physical models, device designs and challenges associated with all the aspects of the diamond power device value chain, from the definition of figures of merit, the material growth and processing conditions, to packaging solutions and targeted applications. Finally, the paper will conclude with suggestions on how to design power converters with diamond devices and will provide the roadmap of diamond device development for power electronics
MATE, a single front-end ASIC for silicon strip, Si(Li) and CsI detectors
MATE (Must ASIC for Time and Energy) will process signals delivered from the hodoscope MUST2. The hodoscope consists of six large area telescopes (100 cm²), each made up of a double sided Si strip detector followed by a Si(Li) and Csi crystal. MATE has sixteen channels and can deliver three types of analogue information per channel; time of flight and energy loss of the detected particle; value of leakage DC current per channel. MATE also gives a trigger logical signal corresponding to the cross over of an adjustable threshold value. The analogue information is transmitted as differential current through twisted pair to the acquisition system based on VXI-C. The slow control is assured via the I2C industrial protocol. The first version of MATE for Si(strip) is available. An update of MATE will allow it to be used for the Si(Li) and Csi detectors. MATE is a novel R&D project for nuclear physics which includes both energy and time measurements with good resolution and high energy dynamic range
ISGRI: the INTEGRAL Soft Gamma-Ray Imager
For the first time in the history of high energy astronomy, a large CdTe
gamma-ray camera is operating in space. ISGRI is the low-energy camera of the
IBIS telescope on board the INTEGRAL satellite. This paper details its design
and its in-flight behavior and performances. Having a sensitive area of 2621
cm with a spatial resolution of 4.6 mm, a low threshold around 12 keV and
an energy resolution of 8% at 60 keV, ISGRI shows absolutely no signs of
degradation after 9 months in orbit. All aspects of its in-flight behavior and
scientific performance are fully nominal, and in particular the observed
background level confirms the expected sensitivity of 1 milliCrab for a 10s
observation.Comment: INTEGRAL A&A special issu
Audiovisual Segregation in Cochlear Implant Users
It has traditionally been assumed that cochlear implant users de facto perform atypically in audiovisual tasks. However, a recent study that combined an auditory task with visual distractors suggests that only those cochlear implant users that are not proficient at recognizing speech sounds might show abnormal audiovisual interactions. The present study aims at reinforcing this notion by investigating the audiovisual segregation abilities of cochlear implant users in a visual task with auditory distractors. Speechreading was assessed in two groups of cochlear implant users (proficient and non-proficient at sound recognition), as well as in normal controls. A visual speech recognition task (i.e. speechreading) was administered either in silence or in combination with three types of auditory distractors: i) noise ii) reverse speech sound and iii) non-altered speech sound. Cochlear implant users proficient at speech recognition performed like normal controls in all conditions, whereas non-proficient users showed significantly different audiovisual segregation patterns in both speech conditions. These results confirm that normal-like audiovisual segregation is possible in highly skilled cochlear implant users and, consequently, that proficient and non-proficient CI users cannot be lumped into a single group. This important feature must be taken into account in further studies of audiovisual interactions in cochlear implant users
Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds
The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio
Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients
Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes
BACKGROUND: Mouse and human skeletal muscle transcriptome profiles vary by muscle type, raising the question of which mouse muscle groups have the greatest molecular similarities to human skeletal muscle. METHODS: Orthologous (whole, sub-) transcriptome profiles were compared among four mouse-human transcriptome datasets: (M) six muscle groups obtained from three mouse strains (wildtype, mdx, mdx(5cv)); (H1) biopsied human quadriceps from controls and Duchenne muscular dystrophy patients; (H2) four different control human muscle types obtained at autopsy; and (H3) 12 different control human tissues (ten non-muscle). RESULTS: Of the six mouse muscles examined, mouse soleus bore the greatest molecular similarities to human skeletal muscles, independent of the latters' anatomic location/muscle type, disease state, age and sampling method (autopsy versus biopsy). Significant similarity to any one mouse muscle group was not observed for non-muscle human tissues (dataset H3), indicating this finding to be muscle specific. CONCLUSION: This observation may be partly explained by the higher type I fiber content of soleus relative to the other mouse muscles sampled
α2,3-Sialyltransferase ST3Gal III Modulates Pancreatic Cancer Cell Motility and Adhesion In Vitro and Enhances Its Metastatic Potential In Vivo
Background: Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process. Methodology/Principal Findings: ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewis x. The transfectants ’ E-selectin binding capacity was proportional to cell surface sialyl-Lewis x levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewis x levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells. Conclusion: In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the rol
Social modulation of androgen levels in male teleost fish
Androgens are classically thought of as the sex steroids controlling male reproduction. However, in recent years evidence has accumulated showing that androgens can also be affected by the interactions between conspecifics, suggesting reciprocal interactions between androgens and behaviour. These results have been interpreted as an adaptation for individuals to adjust their agonistic motivation and to cope with changes in their social environment. Thus, male–male interactions would stimulate the production of androgens, and the levels of androgens would be a function of the stability of its social environment [‘challenge hypothesis’, Gen. Comp. Endocrinol. 56 (1984) 417]. Here the available data on social modulation of androgen levels in male teleosts are reviewed and some predictions of the challenge hypothesis are addressed using teleosts as a study model. We investigate the causal link between social status, territoriality and elevated androgen levels and the available evidence suggests that the social environment indeed modulates the endocrine axis of teleosts. The association between higher androgen levels and social rank emerges mainly in periods of social instability. As reported in the avian literature, in teleosts the trade-off between androgens and parental care is indicated by the fact that during the parental phase breeding males decreased their androgen levels. A comparison of androgen responsiveness between teleost species with different mating and parenting systems also reveals that parenting explains the variation observed in androgen responsiveness to a higher degree than the mating strategy. Finally, the adaptive value of social modulation of androgens and some of its evolutionary consequences are discussed
- …