103 research outputs found
Polymer Collapse and Liquid-Liquid Phase-Separation are Coupled in a Generalized Prewetting Transition
The three-dimensional organization of chromatin is thought to play an
important role in controlling gene expression. Specificity in expression is
achieved through the interaction of transcription factors and other nuclear
proteins with particular sequences of DNA. At unphysiological concentrations
many of these nuclear proteins can phase-separate in the absence of DNA, and it
has been hypothesized that, in vivo, the thermodynamic forces driving these
phases help determine chromosomal organization. However it is unclear how DNA,
itself a long polymer subject to configurational transitions, interacts with
three-dimensional protein phases. Here we show that a long compressible polymer
can be coupled to interacting protein mixtures, leading to a generalized
prewetting transition where polymer collapse is coincident with a locally
stabilized liquid droplet. We use lattice Monte-Carlo simulations and a
mean-field theory to show that these phases can be stable even in regimes where
both polymer collapse and coexisting liquid phases are unstable in isolation,
and that these new transitions can be either abrupt or continuous. For polymers
with internal linear structure we further show that changes in the
concentration of bulk components can lead to changes in three-dimensional
polymer structure. In the nucleus there are many distinct proteins that
interact with many different regions of chromatin, potentially giving rise to
many different Prewet phases. The simple systems we consider here highlight
chromatin's role as a lower-dimensional surface whose interactions with
proteins are required for these novel phases.Comment: 12 pages, 5 figure
Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process
Over the past few decades, bioenergy production from heavy metal-contaminated biomasses (HMCBs) has been drawing increasing attention from scientists in diverse disciplines and countries owing to their potential roles in addressing both energy crisis and environmental challenges. In this review, bioenergy recovery from HMCBs, i.e. contaminated plants and energy crops, using thermochemical processes (pyrolysis, gasification, combustion, and liquefaction) has been scrutinized. Furthermore, the necessity of the implementation of practical strategies towards sustainable phytoextraction and metal-free biofuels production has been critically discussed. To meet this aim, the paper firstly delivers the fundamental concepts regarding the remediation of the brownfields using phytoremediation approach, and then, reviews recent literature on sustainable phytoextraction of heavy metals from polluted soils. Thereafter, to find out the possibility of the cost-efficient production of metal-free biofuels from HMCBs using thermochemical methods, the impacts of various influential factors, such as the type of feedstock and metals contents, the reactor type and operating conditions, and the role of probable pre-/post-treatment on the fate of heavy metals and the quality of products, have also been discussed. Finally, based on relevant empirical results and techno-economic assessment (TEA) studies, the present paper sheds light on pyrolysis as the most promising thermochemical technique for large-scale electricity and heat recovery from HMCBs
Control of Plasmid Copy Number for Synthetic Biology
119 pagesThe precise control of living systems necessitates attention to many different parameters and often the exact values of these parameters are difficult to measure, control, and finely tune. One such parameter is plasmid copy number, in this work we demonstrate precise control of plasmid copy number in ColE1 origin plasmids. This control of plasmid copy number is accomplished in two ways, with an inducible system and a massively parallelized assay used for the generation of hundreds of copy number variants from a single plasmid backbone. This system is used to interrogate the physiological effects of plasmid copy number control on host cells as well as to control gene expression, optimize biosynthesis pathways, and modulate the behavior of a simple genetic circuit. Further, complex behaviors in cells are often difficult to engineer and present even further difficulties due to limited robustness and reliability. We demonstrate that oscillations in a simple network of three genes that mutually repress one another can be facilitated by the titration of transcription factors, which is facilitated by our tunable plasmid copy number system. Together, this work furthers the tools available to us for the precise control of living systems
Fungal pretreatment for lignocellulosic biomass anaerobic digestion
La méthanisation de la biomasse lignocellulosique est un des moyens les plus efficients pour la production d’énergie renouvelable. Cependant, la lignine présente dans cette biomasse est difficile à hydrolyser. Cette limite peut être surmontée grâce aux prétraitements. Parmi eux, les prétraitements peu couteux par pourritures blanches sont attrayants mais ils ont été peu appliqués pour la digestion anaérobie. La présente étude explore les prétraitements par pourritures blanches de la paille de blé afin d’en améliorer sa méthanisation. Tout d’abord, une étape de sélection a révélé l’efficacité de la souche Polyporus brumalis BRFM 985 puisque 43% de méthane supplémentaire ont été obtenus par gramme de matières volatiles par comparaison avec la paille témoin. En prenant en compte les pertes de matières occasionnées par le prétraitement, cela correspondait à 21 % d’amélioration par gramme de matière sèche initiale. De plus, il a été montré que l’addition de glucose durant le prétraitement limitait la délignification et donc la production de méthane du substrat. Puis, des échantillons prétraités furent obtenus lors d’un plan d’expérience visant à optimiser le prétraitement par P. brumalis BRFM 985 ; les paramètres du prétraitement testés étaient : la durée et la température de culture, l’humidité initiale du substrat et l’addition de métaux. Les surfaces de réponse de la production de méthane à partir de ces échantillons furent construites. La production optimale de méthane ne fut pas atteinte dans le domaine expérimental testé mais l’impact positif de l’addition de métaux fut démontré, ainsi que l’importance de choisir une durée de culture adaptée. Ensuite, l’usage de la technique de la pyrolyse-GC-MS pour évaluer l’efficacité du prétraitement fut étudié. Une estimation de la quantité de biomasse fongique avec cette méthode apparaît possible. Le ratio polysaccharides/lignine déterminé par py-GC-MS a permis de classer des échantillons prétraités selon leur biodégradabilité anaérobie. La digestion anaérobie en voie sèche (DAVS) de paille de blé prétraitée en réacteur pilote fut menée en batch avec recirculation des lixiviats. Durant le démarrage de la DAVS, un trop fort S/I mène à une accumulation d’acides gras volatils (AGV) et parfois à la défaillance de la DAVS. Néanmoins, de forts S/I permettent de traiter plus de substrat et augmentent la production de méthane par volume de réacteur. Avec la paille de blé, des S/I entre 2 et 3 (en matières volatiles) permettent un bon démarrage de la DAVS. Alors qu’un ratio AGV totaux/alcalinité inférieur à 0,6 correspond à des réacteurs stables en digestion anaérobie voie liquide ; cette limite semble mal adaptée à la DAVS. Il fut observé que la DAVS pouvait récupérer d’une phase d’acidification tant que le ratio AGV totaux/alcalinité était inférieur à 2 et que la concentration en AGV était inférieure à 10 g/L dans les lixiviats. Malgré une amélioration de la biodégradabilité et une phase de démarrage facilitée, le prétraitement fongique non optimisé ne permit pas d’améliorer la production de méthane après prise en compte des pertes de matière occasionnées par le prétraitement.Anaerobic digestion of lignocellulosic biomass is one of the most efficient ways to produce renewable energy. However, lignin contained in this biomass is difficult to hydrolyze. This limitation can be overcome by pretreatments. Among them, low-cost white-rot fungi pretreatments seem attractive but were scarcely applied for anaerobic digestion. The current study investigates white-rot fungi pretreatments of wheat straw to improve its methane production. Firstly, a selection step has revealed the efficiency of Polyporus brumalis BRFM 985 since 43% more methane per gram of pretreated volatile solids were obtained compared to the control straw. Taking into account the dry weight loss occurring during the pretreatment, it still corresponded to 21% more methane per gram of initial total solids. Moreover, glucose addition during the pretreatment was shown to limit delignification and thus methane production from the substrate. Secondly, pretreated samples were obtained in an experiment device aiming to optimize the pretreatment with P. brumalis BRFM 985; tested pretreatments parameters were: culture duration, temperature, initial substrate moisture content and metals addition. Response surfaces of methane production from those samples were built. Optimum methane production was not reached in the experimental domain but the positive impact of metals addition was demonstrated, so as the importance to choose adequate culture duration. Then, the use of pyrolysis-GC-MS technic to access pretreatment efficiency was studied. Estimation of fungal biomass amount on wheat straw with this method appeared possible. Polysaccharides/lignin ratio determined with py-GC-MS allowed to classify some pretreated samples according to their anaerobic degradability. Solid State Anaerobic Digestion (SSAD) of wheat straw pretreated in pilot-reactor was carried out in batch with leachate recycle. During SSAD start-up phase, too high Substrate/Inoculum (S/I) ratio leads to Volatile Fatty Acid (VFA) accumulation and sometimes to reactor failure but with high S/I more substrate can be treated and methane production per reactor volume increases. With wheat straw, S/I between 2 and 3 (Volatile Solid basis) allow a successful start-up in SSAD. Whereas Total VFA/alkalinity ratio under 0.6 corresponds to stable wet anaerobic digestion; this limit seems not well adapted to SSAD. It was observed that SSAD reactors were able to recover from acidification phase when Total VFA/alkalinity was lower than 2 and with VFA concentrations inferior to 10 g/L in leachate. Despite the improvement of biodegradability and the facilitation of start-up phase, non-optimized fungal pretreatment did not improve methane production after taking into account mass losses occurring during the pretreatment
Prétraitements fongiques pour la méthanisation de la biomasse lignocellulosique
Anaerobic digestion of lignocellulosic biomass is one of the most efficient ways to produce renewable energy. However, lignin contained in this biomass is difficult to hydrolyze. This limitation can be overcome by pretreatments. Among them, low-cost white-rot fungi pretreatments seem attractive but were scarcely applied for anaerobic digestion. The current study investigates white-rot fungi pretreatments of wheat straw to improve its methane production. Firstly, a selection step has revealed the efficiency of Polyporus brumalis BRFM 985 since 43% more methane per gram of pretreated volatile solids were obtained compared to the control straw. Taking into account the dry weight loss occurring during the pretreatment, it still corresponded to 21% more methane per gram of initial total solids. Moreover, glucose addition during the pretreatment was shown to limit delignification and thus methane production from the substrate. Secondly, pretreated samples were obtained in an experiment device aiming to optimize the pretreatment with P. brumalis BRFM 985; tested pretreatments parameters were: culture duration, temperature, initial substrate moisture content and metals addition. Response surfaces of methane production from those samples were built. Optimum methane production was not reached in the experimental domain but the positive impact of metals addition was demonstrated, so as the importance to choose adequate culture duration. Then, the use of pyrolysis-GC-MS technic to access pretreatment efficiency was studied. Estimation of fungal biomass amount on wheat straw with this method appeared possible. Polysaccharides/lignin ratio determined with py-GCMS allowed to classify some pretreated samples according to their anaerobic degradability. Solid State Anaerobic Digestion (SSAD) of wheat straw pretreated in pilot-reactor was carried out in batch with leachate recycle. During SSAD start-up phase, too high Substrate/Inoculum (S/I) ratio leads to Volatile Fatty Acid (VFA) accumulation and sometimes to reactor failure but with high S/I more substrate can be treated and methane production per reactor volume increases. With wheat straw, S/I between 2 and 3 (Volatile Solid basis) allow a successful start-up in SSAD. Whereas Total VFA/alkalinity ratio under 0.6 corresponds to stable wet anaerobic digestion; this limit seems not well adapted to SSAD. It was observed that SSAD reactors were able to recover from acidification phase when Total VFA/alkalinity was lower than 2 and with VFA concentrations inferior to 10 g/L in leachate. Despite the improvement of biodegradability and the facilitation of start-up phase, non-optimized fungal pretreatment did not improve methane production after taking into account mass losses occurring during the pretreatment.La méthanisation de la biomasse lignocellulosique est un des moyens les plus efficients pour la production d’énergie renouvelable. Cependant, la lignine présente dans cette biomasse est difficile à hydrolyser. Cette limite peut être surmontée grâce aux prétraitements. Parmi eux, les prétraitements peu couteux par pourritures blanches sont attrayants mais ils ont été peu appliqués pour la digestion anaérobie. La présente étude explore les prétraitements par pourritures blanches de la paille de blé afin d’en améliorer sa méthanisation. Tout d’abord, une étape de sélection a révélé l’efficacité de la souche Polyporus brumalis BRFM 985 puisque 43% de méthane supplémentaire ont été obtenus par gramme de matières volatiles par comparaison avec la paille témoin. En prenant en compte les pertes de matières occasionnées par le prétraitement, cela correspondait à 21 % d’amélioration par gramme de matière sèche initiale. De plus, il fut montré que l’addition de glucose durant le prétraitement limitait la délignification et donc la production de méthane du substrat. Puis, des échantillons prétraités ont été obtenus lors d’un plan d’expérience visant à optimiser le prétraitement par P. brumalis BRFM 985 ; les paramètres du prétraitement testés étaient : la durée et la température de culture, l’humidité initiale du substrat et l’addition de métaux. Les surfaces de réponse de la production de méthane à partir de ces échantillons ont été construites. La production optimale de méthane n’a pas été atteinte dans le domaine expérimental testé mais l’impact positif de l’addition de métaux a été démontré, ainsi que l’importance de choisir une durée de culture adaptée. Ensuite, l’usage de la technique de la pyrolyse-GC-MS pour évaluer l’efficacité du prétraitement a été étudié. Une estimation de la quantité de biomasse fongique avec cette méthode apparaît possible. Le ratio polysaccharides/lignine déterminé par py-GC-MS a permis de classer des échantillons prétraités selon leur biodégradabilité anaérobie. La digestion anaérobie en voie sèche (DAVS) de paille de blé prétraitée en réacteur pilote a été menée en batch avec recirculation des lixiviats. Durant le démarrage de la DAVS, un trop fort S/I mène à une accumulation d’acides gras volatils (AGV) et parfois à la défaillance de la DAVS. Néanmoins, de forts S/I permettent de traiter plus de substrat et augmentent la production de méthane par volume de réacteur. Avec la paille de blé, des S/I entre 2 et 3 (en matières volatiles) permettent un bon démarrage de la DAVS. Alors qu’un ratio AGV totaux/alcalinité inférieur à 0,6 correspond à des réacteurs stables en digestion anaérobie voie liquide ; cette limite semble mal adaptée à la DAVS. Il a été observé que la DAVS pouvait récupérer d’une phase d’acidification tant que le ratio AGV totaux/alcalinité était inférieur à 2 et que la concentration en AGV était inférieure à 10 g/L dans les lixiviats. Malgré une amélioration de la biodégradabilité et une phase de démarrage facilitée, le prétraitement fongique non optimisé n’a pas permis d’améliorer la production de méthane après prise en compte des pertes de matière occasionnées par le prétraitement
“I make a wish”: the campaign of the two main French patient associations to fight against discrimination
- …
