52 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Searching for solar KDAR with DUNE

    Get PDF

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ (5σ) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis

    No full text
    Dental diseases are now viewed as a consequence of a deleterious shift in the balance of the normally stable resident oral microbiome. It is known that frequent carbohydrate consumption or reduced saliva flow can lead to caries, and excessive plaque accumulation increases the risk of periodontal diseases. However, when these "disease drivers" are present, while some individuals appear to be susceptible, others are more tolerant or resilient to suffering from undesirable changes in their oral microbiome. Health-maintaining mechanisms that limit the effect of disease drivers include the complex set of metabolic and functional interrelationships that develop within dental biofilms and between biofilms and the host. In contrast, "positive feedback loops" can develop within these microbial communities that disrupt resilience and provoke a large and abrupt change in function and structure of the ecosystem (a microbial "regime shift"), which promotes dysbiosis and oral disease. For instance, acidification due to carbohydrate fermentation or inflammation in response to accumulated plaque select for a cariogenic or periopathogenic microbiota, respectively, in a chain of self-reinforcing events. Conversely, in tolerant individuals, health-maintaining mechanisms, including negative feedback to the drivers, can maintain resilience and promote resistance to and recovery from disease drivers. Recently studied health-maintaining mechanisms include ammonia production, limiting a drop in pH that can lead to caries, and denitrification, which could inhibit several stages of disease-associated positive feedback loops. Omics studies comparing the microbiome of, and its interaction with, susceptible and tolerant hosts can detect markers of resilience. The neutralization or inhibition of disease drivers, together with the identification and promotion of health-promoting species and functions, for example, by pre- and probiotics, could enhance microbiome resilience and lead to new strategies to prevent disease
    • 

    corecore