78 research outputs found
Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements
Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions
The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the BrewerâDobson Circulation: An Analysis of MSU and SSU Data
Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the BrewerâDobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU). While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: DecemberâMarch in the Northern Hemisphere and JulyâOctober in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere. The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. M
Seasonal Variation of Mass Transport Across the Tropopause
The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface
Recommended from our members
Age spectra and other transport diagnostics in the North American monsoon UTLS from SEACRS in situ trace gas measurements
The upper troposphere and lower stratosphere (UTLS) region during the summer monsoon season over North America (NAM) is influenced by the transport of air from a variety of source regions over a wide range of timescales (hours to years). Age spectra are useful for characterizing the transport into such a region, and in this study we use and build on recently developed techniques to infer age spectra from trace gas measurements with photochemical lifetimes from days to centuries. We show that the measurements taken by the whole-air sampler instrument during the SEACRS campaign can be used to derive not only age spectra, but also path-integrated lifetimes of each of the trace gases and partitioning between North American and tropical surface source origins. The method used here can also clearly identify and adjust for measurement outliers that were influenced by polluted surface source regions. The results are generally consistent with expected transport features of the NAM but also provide a range of transport diagnostics (age spectra, trace gas lifetimes and surface source regions) that have not previously been computed solely from in situ measurements. These methods may be applied to many other existing in situ datasets, and the transport diagnostics can be compared with chemistryâclimate model transport in the UTLS
Diverse policy implications for future ozone and surface UV in a changing climate
Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer's dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels
Recommended from our members
Seasonal variations of water vapor in the tropical lower stratosphere
Measurements of stratospheric water vapor by the Microwave Limb Sounder aboard the Upper Atmosphere Research Satellite show that in the tropical lower stratosphere, lowâfrequency variations are closely related to the annual cycle in tropical tropopause temperatures. Tropical stratospheric air appears to retain information about the tropopause conditions it encountered for over a year as it rises through the stratosphere. We use a twoâdimensional Lagrangian model to relate MLS measurements to the temperature that tropical air parcels encountered when crossing the 100 hPa surface
Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission
The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20âkm. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds
Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)
The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner
Recommended from our members
Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis
Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate
- âŠ