371 research outputs found

    Grouping by feature of cross-modal flankers in temporal ventriloquism

    Get PDF
    Signals in one sensory modality can influence perception of another, for example the bias of visual timing by audition: temporal ventriloquism. Strong accounts of temporal ventriloquism hold that the sensory representation of visual signal timing changes to that of the nearby sound. Alternatively, underlying sensory representations do not change. Rather, perceptual grouping processes based on spatial, temporal, and featural information produce best-estimates of global event properties. In support of this interpretation, when feature-based perceptual grouping conflicts with temporal information-based in scenarios that reveal temporal ventriloquism, the effect is abolished. However, previous demonstrations of this disruption used long-range visual apparent-motion stimuli. We investigated whether similar manipulations of feature grouping could also disrupt the classical temporal ventriloquism demonstration, which occurs over a short temporal range. We estimated the precision of participants’ reports of which of two visual bars occurred first. The bars were accompanied by different cross-modal signals that onset synchronously or asynchronously with each bar. Participants’ performance improved with asynchronous presentation relative to synchronous - temporal ventriloquism - however, unlike the long-range apparent motion paradigm, this was unaffected by different combinations of cross-modal feature, suggesting that featural similarity of cross-modal signals may not modulate cross-modal temporal influences in short time scales

    Panchromatic spectral energy distributions of Herschel sources

    Get PDF
    (abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the "off-sequence" region of the M*-SFR-z space.Comment: Accepted for publication in A&A. Some figures are presented in low resolution. The new galaxy templates are available for download at the address http://www.mpe.mpg.de/ir/Research/PEP/uvfir_temp

    The evolution of the dust temperatures of galaxies in the SFR–M∗plane up to z ~ 2

    Get PDF
    We study the evolution of the dust temperature of galaxies in the SFR−M ∗ plane up to z ∌ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M ∗ ) and redshift estimates, we grid the SFR−M ∗ parameter space in several redshift ranges and estimate the mean dust temperature (T dust ) of each SFR–M ∗ −z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100–500ÎŒm) of our SFR–M ∗ −z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (L IR ), specific SFRs (SSFR; i.e., SFR/M ∗ ), and distances with respect to the main sequence (MS) of the SFR−M ∗ plane (i.e., Δlog(SSFR) MS = log[SSFR(galaxy)/SSFR MS (M ∗ ,z)]). The T dust −SSFR and T dust – Δlog(SSFR) MS correlations are statistically much more significant than the T dust −L IR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ∌ 2. We convert these results into a recipe to derive T dust from SFR, M ∗ and z, valid out to z ∌ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong T dust −Δlog(SSFR) MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the T dust −Δlog(SSFR) MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/M gas ) with Δlog(SSFR) MS as found locally by molecular gas studies. Secondly, at fixed Δlog(SSFR) MS , the constant dust temperature observed in galaxies probing wide ranges in SFR and M ∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in them. And thirdly, at high redshift, the normalisation towards hotter dust temperature of the T dust −Δlog(SSFR) MS correlation can be explained by the decrease in the metallicities of galaxies or by the increase in the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different. MS galaxies have star-forming regions with low SFEs and thus cold dust, while galaxies situated far above the MS seem to be in a starbursting phase characterised by star-forming regions with high SFEs and thus hot dust

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    The composite nature of Dust-Obscured Galaxies (DOGs) at z∌2-3 in the COSMOS field: I. A far-infrared view

    Get PDF
    Dust-Obscured galaxies (DOGs) are bright 24ÎŒm-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (TD ∌ 200-1000K) in the near-IR indicating that their mid-IR luminosity is dominated by an active galactic nucleus (AGN). DOGs with a fainter 24 ÎŒm flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g., total IR luminosities; mid-to-far IR colours; dust temperatures and masses) based on SED fitting. Of particular interest are the 24 ÎŒm-bright DOGs (F 24ÎŒm >1mJy). They present bluer far-IR/mid-IR colours than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000ÎŒm flux increases as a function of the rest-frame 8ÎŒm-luminosity irrespective of the redshift. This confirms that faint DOGs (L 8ÎŒm < 10 12 Lo ) are dominated by star-formation while brighter DOGs show a larger contribution from an AGN

    PACS Evolutionary Probe (PEP) - A Herschel Key Program

    Get PDF
    Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role in the complement of Herschel surveys, and the field selection which includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high redshift galaxy populations, thus testing and superseeding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.Comment: 13 pages, 12 figures, accepted for publication in A&

    The Circumgalactic Medium in Massive Halos

    Full text link
    This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to be published by Springe

    The Herschel Multi-tiered Extragalactic Survey: HerMES

    Get PDF
    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte
    • 

    corecore