431 research outputs found

    High-fidelity quantum driving

    Full text link
    The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the system's parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.Comment: 17 pages, 4 figure

    Plan de negocios para evaluar la viabilidad de un centro de esparcimiento para canes en Lima

    Get PDF
    El presente plan de negocios tiene como objetivo desarrollar el lanzamiento y puesta en marcha de un centro de esparcimiento para canes en los segmentos A2, B en Lima Metropolitana y proponer las estrategias para una implementaci?n exitosa, evaluando ?ntegramente el atractivo del negocio

    The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects

    Get PDF
    Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models

    Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection.

    Get PDF
    We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response

    M1-like macrophages are potent producers of anti-viral interferons and M1-associated marker-positive lung macrophages are decreased during rhinovirus-induced asthma exacerbations

    Get PDF
    Background Macrophages (Mф) can be M1/M2 polarized by Th1/2 signals, respectively. M2-like Mф are thought to be important in asthma pathogenesis, and M1-like in anti-infective immunity, however their roles in virus-induced asthma exacerbations are unknown. Our objectives were (i) to assess polarised Mф phenotype responses to rhinovirus (RV) infection in vitro and (ii) to assess Mф phenotypes in healthy subjects and people with asthma before and during experimental RV infection in vivo. Methods We investigated characteristics of polarized/unpolarized human monocyte-derived Mф (MDM, from 3–6 independent donors) in vitro and evaluated frequencies of M1/M2-like bronchoalveolar lavage (BAL) Mф in experimental RV-induced asthma exacerbation in 7 healthy controls and 17 (at baseline) and 18 (at day 4 post infection) people with asthma. Findings We observed in vitro: M1-like but not M2-like or unpolarized MDM are potent producers of type I and III interferons in response to RV infection (P<0.0001), and M1-like are more resistant to RV infection (P<0.05); compared to M1-like, M2-like MDM constitutively produced higher levels of CCL22/MDC (P = 0.007) and CCL17/TARC (P<0.0001); RV-infected M1-like MDM were characterized as CD14+CD80+CD197+ (P = 0.002 vs M2-like, P<0.0001 vs unpolarized MDM). In vivo we found reduced percentages of M1-like CD14+CD80+CD197+ BAL Mф in asthma during experimental RV16 infection compared to baseline (P = 0.024). Interpretation Human M1-like BAL Mф are likely important contributors to anti-viral immunity and their numbers are reduced in patients with allergic asthma during RV-induced asthma exacerbations. This mechanism may be one explanation why RV-triggered clinical and pathologic outcomes are more severe in allergic patients than in healthy subjects. Funding ERC FP7 Advanced grant 233015, MRC Centre Grant G1000758, Asthma UK grant 08–048, NIHR Biomedical Research Centre funding scheme, NIHR BRC Centre grant P26095, the Predicta FP7 Collaborative Project grant 260895, RSF grant 19-15-00272, Megagrant No 14.W03.31.0024

    The association of circulating amylin with β-amyloid in familial Alzheimer's disease.

    Get PDF
    INTRODUCTION: This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). METHODS: Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS: Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. DISCUSSION: These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms

    Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV

    Get PDF
    Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently

    Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams

    Get PDF
    From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should, be identical and should exhibit a quadratic dependence on the radial polar coordinate
    corecore