19 research outputs found

    Developing key skills as a science communicator: Case studies of two scientist-led outreach programmes

    Get PDF
    Outreach by scientific researchers in school classrooms often results in widespread benefit for learners, classroom teachers and researchers. This paper presents a consideration of these benefits using two case studies in the Geography, Earth and Environmental Sciences (GEES). In each case, different school classroom-based activities were designed by scientists, but were improved by input from educational professionals, which helped to maximize the mutual learning experiences and to ensure the quality of the content and its delivery. Each case study suggests an improvement in scientist’s working knowledge of best practices for classroom-based outreach activities, which can translate to improved practices for University-level teaching, among other tangible career-relevant benefits. Despite these benefits, these projects highlight the well-established need for improved training for researchers in effective outreach practices, increased value on programme evaluation, and the growing need for meaningful professional recognition for researchers involved in these important, and ever-growing, outreach activities

    Editorial: Geoscience communication – planning to make it publishable

    Get PDF
    If you are a geoscientist doing work to achieve impact outside academia or engaging different audiences with the geosciences, are you planning to make this publishable? If so, then plan. Such investigations into how people (academics, practitioners, other publics) respond to geoscience can use pragmatic, simple research methodologies accessible to the non-specialist or be more complex. To employ a medical analogy, first aid is useful and the best option in some scenarios, but calling a medic (i.e. a collaborator with experience of geoscience communication or relevant research methods) provides the contextual knowledge to identify a condition and opens up a diverse, more powerful range of treatment options. Here, we expand upon the brief advice in the first editorial of Geoscience Communication (Illingworth et al., 2018), illustrating what constitutes robust and publishable work in this context, elucidating its key elements. Our aim is to help geoscience communicators plan a route to publication and to illustrate how good engagement work that is already being done might be developed into publishable research

    Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14 C production rates by muons

    Get PDF
    Cosmic rays entering the Earth’s atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (16O) in minerals such as ice and quartz can produce carbon-14 (14C). In glacial ice, 14C is also incorporated through trapping of 14C-containing atmospheric gases (14CO2, 14CO, and 14CH4). Understanding the production rates of in situ cosmogenic 14C is important to deconvolve the in situ cosmogenic and atmospheric 14C signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ 14C production rates by muons (which are the dominant production mechanism at depths of > 6m solid ice equivalent) are uncertain. In this study, we use measurements of in situ 14C in ancient ice (> 50 ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of 14C production by muons and the partitioning of in situ 14C between CO2, CO, and CH4. Our measurements show that 33.7% (11.4%; 95% confidence interval) of the produced cosmogenic 14C forms 14CO and 66.1% (11.5%; 95% confidence interval) of the produced cosmogenic 14C forms 14CO2. 14CH4 represents a very small fraction (< 0.3%) of the total. Assuming that the majority of in situ muogenic 14C in ice forms 14CO2, 14CO, and 14CH4, we also calculated muogenic 14C production rates that are lower by factors of 5.7 (3.6–13.9; 95% confidence interval) and 3.7 (2.0–11.9; 95% confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic 14C production rates in ice and quartz currently lacks a good explanation and requires further investigation

    The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ²H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Building a Practice-Based Research Agenda for Wildfire Smoke and Health: A Report of the 2018 Washington Wildfire Smoke Risk Communication Stakeholder Synthesis Symposium

    No full text
    Background: As climate change is expected to result in more frequent, larger fires and associated smoke impacts, creating and sustaining wildfire smoke-resilient communities is an urgent public health priority. Following two summers of persistent and extreme wildfire smoke events in Washington state, the need for additional research on wildfire smoke health impacts, risk communication, and risk reduction, and an associated greater coordination between researcher and practitioner communities, is of paramount importance. Objectives: On 30 October 2018, the University of Washington hosted a Wildfire Smoke Risk Communication Stakeholder Synthesis Symposium in Seattle, Washington. The goals of the symposium were to identify and prioritize practice-based information gaps necessary to promote effective wildfire smoke risk communication and risk reduction across Washington state, foster collaboration among practitioners and academics to address information gaps using research, and provide regional stakeholders with access to the best available health and climate science about current and future wildfire risks. Methods: Seventy-six Washington state practitioners and academics with relevant professional responsibilities or expertise in wildfire smoke and health engaged in small group discussions using the &ldquo;World Caf&eacute; Method&rdquo; to identify practice-relevant research needs related to wildfire smoke and health. Notes from each discussion were coded and qualitatively analyzed using a content analysis approach. Discussion: Washington state&rsquo;s public health and air quality practitioners need additional evidence to communicate and reduce wildfire smoke risk. Exposure, health risk, risk communication, behavior change and interventions, and legal and policy research needs were identified, along with the need to develop research infrastructure to support wildfire smoke and health science. Practice-relevant, collaborative research should be prioritized to address this increasing health threat

    Seasonal controls on sediment transport and deposition in Lake Ohau, South Island, New Zealand: implications for a high-resolution Holocene palaeoclimate reconstruction

    No full text
    Laminated sediments in Lake Ohau, Mackenzie Basin, New Zealand, offer a potential high-resolution climate record for the past 17 kyr. Such records are particularly important due to the relative paucity of detailed palaeoclimate data from the Southern Hemisphere mid-latitudes. This paper presents outcomes of a study of the sedimentation processes of this temperate lake setting. Hydrometeorological, limnological and sedimentological data were collected over a 14 month period between 2011 and 2013. These data indicate that seasonality in the hydrometeorological system in combination with internal lake dynamics drives a distinct seasonal pattern of sediment dispersal and deposition on a basin-wide scale. Sedimentary layers that accumulate proximal to the lake inflow at the northern end of the lake form in response to discrete inflow events throughout the year and display an event stratigraphy. In contrast, seasonal change in the lake system controls accumulation of light (winter) and dark (summer) laminations at the distal end of the lake, resulting in the preservation of varves. This study documents the key processes influencing sediment deposition throughout Lake Ohau and provides fundamental data for generating a high-resolution palaeoclimate record from this temperate lake
    corecore