24 research outputs found

    The periovulatory endocrine milieu affects the uterine redox environment in beef cows

    Get PDF
    Abstract\ud \ud Background\ud In cattle, recent studies have shown positive associations between pre-ovulatory concentrations of estradiol (E2), progesterone (P4) at early diestrus and fertility. However, information on cellular and molecular mechanisms through which sex steroids regulate uterine function to support early pregnancy is lacking. Based on endometrial transcriptome data, objective was to compare function of the redox system in the bovine uterus in response to different periovulatory endocrine milieus.\ud \ud \ud Methods\ud We employed an animal model to control growth of the pre-ovulatory follicle and subsequent corpus luteum (CL). The large follicle-large CL group (LF-LCL, N = 42) presented greater levels of E2 on the day of GnRH treatment (D0; 2.94 vs. 1.27 pg/mL; P = 0.0007) and P4 at slaughter on D7 (3.71 vs. 2.62 ng/mL, P = 0.01), compared with the small follicle-small CL group (SF-SCL, N = 41). Endometrium and uterine washings (N = 9, per group) were collected for analyses of variables associated with the uterine redox system.\ud \ud \ud Results\ud The SF-SCL group had lower endometrial catalase (0.5 vs. 0.79 U/mg protein, P < 0.001) and glutathione peroxidase (GPx; 2.0 vs. 2.43 nmol β-nicotinamide adenine dinucleotide phosphate reduced/min/mg protein, P = 0.04) activity, as well as higher lipid peroxidation (28.5 vs. 17.43 nmol malondialdehyde/mg of protein, P < 0.001) and superoxide dismutase (SOD) activity (44.77 vs. 37.76 U; P = 0.04). There were no differences in the endometrial reactive species (RS) or glutathione (GSH) concentrations between the groups. The uterine washing samples showed no differences in the concentrations of RS or GSH or in total SOD activity (P > 0.1). Additionally, catalase, GPx4, SOD1 and SOD2 gene expression was lower in the SF-SCL group than in the LF-LCL group.\ud \ud \ud Conclusions\ud We concluded that the intrauterine environment of cows from the LF-LCL group exhibited higher antioxidant activity than that of the cows from the SF-SCL group. We speculate that uterine receptivity and fertility are associated with an optimal redox environment, such as that present in the animals in the LF-LCL group.São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP) (#2011/03226-4 and #2012/23532-5)National Council for Scientific and Technological Development (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Effect of early pregnancy diagnosis by per rectum amniotic sac palpation on pregnancy loss, calving rates, and abnormalities in newborn dairy calves

    No full text
    The objectives of the present study were to evaluate the effect of per rectal amniotic sac palpation (ASP) for pregnancy diagnosis during the late embryonic period on pregnancy loss, calving rates, and abnormalities in newborn calves. A controlled, randomized, blocked, blind experiment containing 680 lactating pregnant dairy cows with a viable embryo diagnosed by transrectal ultrasonography was performed. Two dairy operation sites (farm A and farm B) were selected. At each farm, the cows were randomly divided into control (CON) and ASP groups. The CON group was not subjected to pregnancy diagnosis via per rectum palpation. The ASP examinations were performed by one experienced veterinarian between Days 34 and 45 after breeding. All cows were reevaluated by transrectal ultrasonography only between 2 and 4 weeks later. Two calving rates were calculated: calving rate 1 (cows that calved from the initial number of pregnant cows) and calving rate 2 (cows that calved from cows pregnant at reexamination). In farm A, the percentages of early pregnancy loss were 11.5% (19 of 165) and 13.2% (24 of 182) for the CON and the ASP groups, respectively (P = 0.64). In farm B, the percentage of early pregnancy loss was 11.2% (19 of 170) for the CON group and 8.8% (14 of 159; P = 0.48) for the ASP group. In farm A, the percentage of late pregnancy loss was 7.6% (11 of 145) for the CON group and 5.5% (8 of 155; P = 0.39) for the ASP group. In farm B, the percentage of late pregnancy loss was 3.7% (5 of 137) for the CON group and 6.3% (8 of 127; P = 0.32) for the ASP group. In farm A, early pregnancy loss was higher than late pregnancy loss (12.4% vs. 6.3%; P = 0.01), and in farm B, the same tendency was detected (10.0% vs. 4.9%, for early and late pregnancy loss, respectively; P = 0.02). In farm A, calving rate 1 was 81.2% (134 of 165) for the CON group and 80.8% (147 of 182; P = 0.92) for the ASP group. Calving rate 2 for the same groups was 92.4% (134 of 145) and 94.8% (147 of 155), respectively (P = 0.68). In farm B, calving rate 1 was 77.7% (132 of 170) for the CON group and 74.8% (119 of 159; P = 0.55) for the ASP group. Calving rates 2 for the same groups were 87.4% (132 of 151) and 82.1% (119 of 145), respectively (P = 0.20). Two female calves with atresia coli were diagnosed only in the CON group. It was concluded that ASP during the late embryonic period for pregnancy diagnosis did not increase the pregnancy loss, affect calving rates, or produce abnormalities in calves

    Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss, calving rates, and abnormalities in newborn calves

    No full text
    The objectives of the present investigation were to evaluate the pregnancy diagnosis by detection of either the allantochorion membrane (FMS) or amniotic sac (ASP) by per rectum palpation (PRP) during late embryonic or early fetal period on pregnancy loss (PRL) at reexamination, calving rates, and abnormalities in newborn calves. A controlled randomized blind design with 800 lactating dairy pregnant cows diagnosed by transrectal ultrasonography (TRUS) between Days 35 and 57 of gestation from one dairy farm were included. The cows were randomly divided according to detection of allantochorion membrane (FMS group; n = 264), detection of amniotic sac (ASP group; n = 266), and TRUS (control [CON] group; n = 270). TRUS was considered as the criterion standard method of comparison. The entire PRP was performed by one experienced veterinarian. Then, all the cows were reexamined only by TRUS between 2 and 4 weeks later by two independent veterinarians to assess PRL. The calving rate one (number of cows calved divided by the number of cows initially pregnant) and calving rate two (number of cows calved divided by the number of cows pregnant at reexamination) for each group was calculated. All abortions and stillborns were necropsied, and calves alive were followed for 5 days. The overall initial PRL (between initial pregnant cows and reexamination) for FMS, ASP, and CON groups was 7.4% (19/258), 8.8% (23/262), and 9.2% (24/260), respectively (P = 0.75). The overall late PRL (between reexamination and calving) for FMS, ASP, and CON groups was 4.2% (9/213), 5.7% (12/209), and 4.2% (9/216), respectively (P = 0.71). The calving rate one for FMS, ASP, and TRUS groups was 79.1% (204/258), 75.2% (197/262), and 79.6% (207/260), respectively (P = 0.63). The calving rate two for the same groups was 85.4% (204/239), 82.4% (197/239), and 87.7% (207/236), respectively (P = 0.27). The number of fetuses aborted late, premature, and mature dead from FMS, ASP, and CON groups was 6, 4, and 5, respectively (P = 0.85), and no abnormalities at necropsy were detected. One stillborn male calf with atresia coli after 281 days of gestation from a cow examined by ASP at Day 51 was diagnosed. It was concluded that the use of either FMS or ASP for pregnancy diagnosis during late embryonic or early fetal period did not increase the PRL, affect calving rates, or produce calves with congenital abnormalities

    Perturbations in the uterine luminal fluid composition are detrimental to pregnancy establishment in cattle

    No full text
    Abstract Background A major, unresolved issue is how the uterine microenvironment determines pregnancy success in cattle. Before implantation, conceptus development depends on the uterine secretome (i.e., histotroph). Despite its pivotal role, little is known about the dynamics of histotroph synthesis and changes in composition throughout the early diestrus and the relevance to pregnancy establishment. We hypothesize that disturbances on histotroph composition affect the establishment of pregnancy. Aim was to disturb histotroph composition at early diestrus and verify the effects on: (Exp. 1) timing to restore its composition; and (Exp. 2) pregnancy rate after multiple-embryo transfer. Estrous cycle of multiparous Nelore cows were synchronized and estrus was considered d 0 (D0) of the experiments. Disturbance was through flushing each uterine horn with 30 mL of DMPBS and collecting the resulting uterine luminal flushing (ULF) on D1; D4; D7; D1 + D4 + D7. Control group remained not-collected. In Exp. 1, ULF was collected on D7.5 from all animals and used for quantification of total protein concentration and abundance of albumin. In Exp. 2, three in vitro-produced embryos were transferred to the uterine horn ipsilateral to the ovary containing the CL on D7.5 and pregnancy was checked on D25 by ultrasound. Results In Exp. 1, ULF collection on D4 or D7 increased (1.5- to 2.2-folds) the total protein concentration and albumin abundance. ULF collection on D1 did not alter (P > 0.10) these endpoints. In Exp. 2, ULF collected on D4 or D7 decreased pregnancy rates to approximately half of that measured in the remaining groups. Conclusions Subtle perturbations imposed to the native intrauterine milieu, such as those caused by a single, low-volume collection of ULF, profoundly disturbs intrauterine composition and pregnancy success. At least 4 d were necessary for the uterus to recover its composition and the functional capacity to carry post-implantation gestation

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Comparative Genomic Analysis of a Clinical Isolate of Klebsiella quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 Beta-Lactamases Producer Harboring Two Drug-Resistance Plasmids from Southeast Brazil

    No full text
    The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the blaKPC−2 was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings

    Image4.PDF

    No full text
    <p>The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the bla<sub>KPC−2</sub> was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.</p

    Image1.pdf

    No full text
    <p>The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the bla<sub>KPC−2</sub> was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.</p
    corecore