261 research outputs found

    Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia

    Get PDF
    Copyright by the Ecological Society of America ©2004. Feldpausch, TR, Rondon, MA, Fernandes, ECM, Riha, SJ and Wandelli, E (2004) Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecological Applications, 14 (4). S164 - S176 . ISSN 1051-0761 http://dx.doi.org/10.1890/01-6015Over the past three decades, large expanses of forest in the Amazon Basin were converted to pasture, many of which later degraded to woody fallows and were abandoned. While the majority of tropical secondary forest (SF) studies have examined post-deforestation or post-agricultural succession, we examined post-pasture forest recovery in 10 forests ranging in age from 0 to 14 years since abandonment. We measured aboveground biomass and soil nutrients to 45 cm depth and computed total site carbon (C) and nutrient stocks to gain an understanding of the dynamics of nutrient and C buildup in regenerating SF in central Amazonia. Aboveground biomass accrual was rapid, 11.0 Mg·ha−1·yr−1, in the young SFs. Within 12–14 yr, they accumulated up to 128.1 Mg/ha of dry aboveground biomass, equivalent to 25–50% of primary forest biomass in the region. Wood nitrogen (N) and phosphorus (P) concentrations decreased with forest age. Aboveground P and calcium (Ca) stocks accumulated at a rate of 1.2 and 29.4 kg·ha−1·yr−1; extractable soil P stocks declined as forest age increased. Although soil stocks of exchangeable Ca (207.0 ± 23.7 kg/ha) and extractable P (8.3 ± 1.5 kg/ha) were low in the first 45 cm, both were rapidly translocated from soil to plant pools. Soil N stocks increased with forest age, probably due to N fixation, atmospheric deposition, and/or subsoil mining. Total soil C storage to 45 cm depth ranged between 42 and 84 Mg/ha, with the first 15 cm storing 40–45% of the total. Total C accrual (7.04 Mg C·ha−1·yr−1) in both aboveground and soil pools was similar or higher than values reported in other studies. Tropical SFs regrowing on lightly to moderately used pasture rapidly sequester C and rebuild total nutrient capital following pasture abandonment. Translocation of some nutrients from deep soil (>45 cm depth) may be important to sustaining productivity and continuing biomass accumulation in these forests. The soil pool represents the greatest potential for long-term C gains; however, soil nutrient deficits may limit future productivity

    Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance

    Get PDF
    Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect's oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles

    Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens

    Get PDF
    This is the final version. Available on open access from Cell Press via the DOI in this recordIn certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.Medical Research Council (MRC)University of AberdeenUniversity of Exete

    Complement-Binding Donor-Specific Anti-HLA Antibodies and Risk of Primary Graft Failure in Hematopoietic Stem Cell Transplantation

    Get PDF
    AbstractDetection of donor-specific anti-HLA antibodies (DSA) has been associated with graft rejection in all forms of transplantation. The mechanism by which DSA increase the risk of graft failure remains unclear. We hypothesized that complement-binding DSA are associated with engraftment failure in hematopoietic stem cell transplantation (HSCT) and analyzed 122 haploidentical transplant recipients tested prospectively for DSA. Retrospective analysis to detect C1q binding DSA (C1q+DSA) was performed on 22 allosensitized recipients. Twenty-two of 122 patients (18%) had DSA, 19 of which were women (86%). Seven patients with DSA (32%) rejected the graft. Median DSA level at transplant for patients who failed to engraft was 10,055 mean fluorescence intensity (MFI) versus 2065 MFI for those who engrafted (P = .007). Nine patients with DSA were C1q positive in the initial samples with median DSA levels of 15,279 MFI (range, 1554 to 28,615), compared with 7 C1q-negative patients with median DSA levels of 2471 MFI (range, 665 to 12,254) (P = .016). Of 9 patients who were C1q positive in the initial samples, 5 patients remained C1q positive at time of transplant (all with high DSA levels [median, 15,279; range, 6487 to 22,944]) and experienced engraftment failure, whereas 4 patients became C1q negative pretransplant and all engrafted the donor cells (P = .008). In conclusion, patients with high DSA levels (>5000 MFI) and complement-binding DSA antibodies (C1q positive) appear to be at much higher risk of primary graft failure. The presence of C1q+DSA should be assessed in allosensitized patients before HSCT. Reduction of C1q+DSA levels might prevent engraftment failure in HSCT

    Double fingerprint characterization of uracil and 5-fluorouracil

    Get PDF
    Time Resolved Raman spectroelectrochemistry (TR-Raman-SEC) has been used for the first time to obtain two different Raman spectra of one single analyte in the same experiment. This double detection has been accomplished thanks to the use of electrochemical surface enhanced Raman scattering (EC-SERS) and electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) in the same experiment. These two Raman enhancement phenomena can provide a broad insight into the interaction between analyte and substrate surface when they are combined. To prove the possibilities of this methodology, a Raman spectroelectrochemistry study of uracil (U) and 5-fluorouracil (5-FU), two analytes with relevance in medicine and biochemistry, have been performed. Density functional theory (DFT) calculations has been carried out to shed more light on the interaction of these molecules with silver substrates in acidic media.Ministerio de Economía, y Competitividad (Grant CTQ2017–83935-R-AEI/FEDERUE), Junta de Castilla y León (Grant BU297P18, Grant BU087G19, and Grant BU263P18) and Ministerio de Ciencia, Innovación y Universidades (Grant RED2018–102412-T and Grant PID2019–111215RB-I00). W. Ch. thanks JCyL for his postdoctoral fellowship (Grant BU297P18). S.H. thanks JCyL and European Social Fund for her predoctoral fellowship. M.P-E. thanks JCyL, the European Social Fund and the Youth Employment initiative and JCyL and European Social Fund for his predoctoral fellowship. This research has made use of the high-performance computing resources of the Castilla y León Supercomputing Center (SCAYLE, https://www.scayle.es), financed by FEDER (Fondo Europeo de Desarrollo Regional). Jorge Gonzalez is acknowledged for his help in the laboratory whose contract was founded by JCyL, the European Social Fund and the Youth Employment Initiative

    A CO2 sensing module modulates β-1,3-glucan exposure in Candida albicans.

    Get PDF
    This work was funded by a program grant to A.J.P.B., N.A.R.G., L.P.E., and M.G.N. from the UK Medical Research Council [www.mrc.ac.uk: MR/M026663/1, MR/M026663/2]. The work was also supported by the Medical Research Council Centre for Medical Mycology [MR/N006364/1, MR/N006364/2], by a grant to C.d.E. from the European Commission [FunHoMic: H2020-MSCA-ITN-2018–812969], and by the Wellcome Trust via Investigator, Collaborative, Equipment, Strategic and Biomedical Resource awards [www.wellcome.ac.uk: 075470, 086827, 093378, 097377, 099197, 101873, 102705, 200208, 217163, 224323]. Work in the d’Enfert laboratory was supported by grants from the Agence Nationale de Recherche (ANR-10-LABX-62-IBEID) and the Swiss National Science Foundation (Sinergia CRSII5_173863/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Derivation of Induced Pluripotent Stem Cells from Human Peripheral Blood T Lymphocytes

    Get PDF
    Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of personalized in vitro disease models, genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs (“TiPS”) retain a normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells (hESCs) with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons, cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR) gene rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies. Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific iPSCs, and control their differentiation into specific lineages
    corecore