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a b s t r a c t 

Time Resolved Raman spectroelectrochemistry (TR-Raman-SEC) has been used for the first time to obtain 

two different Raman spectra of one single analyte in the same experiment. This double detection has 

been accomplished thanks to the use of electrochemical surface enhanced Raman scattering (EC-SERS) 

and electrochemical surface oxidation enhanced Raman scattering (EC-SOERS) in the same experiment. 

These two Raman enhancement phenomena can provide a broad insight into the interaction between 

analyte and substrate surface when they are combined. To prove the possibilities of this methodology, a 

Raman spectroelectrochemistry study of uracil (U) and 5-fluorouracil (5-FU), two analytes with relevance 

in medicine and biochemistry, have been performed. Density functional theory (DFT) calculations has 

been carried out to shed more light on the interaction of these molecules with silver substrates in acidic 

media. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Raman spectroscopy is a vibrational spectroscopy used for 

any years in the characterization of a wide range of molecules 

oth in solid and in solution, mainly due to the capability of this 

echnique to provide spectroscopic fingerprints of substances [1] . 

he low sensitivity of Raman spectroscopy limits its use both in 

he characterization and in the detection of molecules. Luckily, Ra- 

an signal can be enhanced using diverse strategies like resonance 

aman, surface enhanced Raman scattering (SERS) or electrochem- 

cal surface oxidation Enhanced Raman scattering (EC-SOERS). The 

ost used method to enhance the Raman signal is SERS. Particu- 

arly, electrochemical surface enhanced Raman scattering (EC-SERS) 

as been studied for the last 40 years [2] . It is well established that

he observed Raman enhancement can be attributed to two main 

actors, namely electromagnetic enhancement (EM) and chemical 

nhancement (CE). The first one is related to the intensification of 

he electric field on the surrounding of a plasmonic nanostructure 

uring localized surface plasmon resonance, and can be responsi- 

le of an enhancement factor of Raman scattering up to 10 9 [3 , 4] .

n the other hand, the CE is related with the change of the polar-

zability of molecules due to charge transferences between the an- 

lyte and the substrate. The latter mechanism is related with lower 

nhancement factors than the EM, between 10 2 and 10 3 [4 , 5] . 
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EC-SOERS is a recently discovered phenomenon that allows the 

aman signal enhancement of molecules during the oxidation of 

 silver substrate [6] . This phenomenon is truly interesting, since 

ts origin defies the classic theory of SERS, which suggest that Ra- 

an enhancement should disappear at anodic potentials due to 

he degradation of plasmonic properties [7 , 8] . Although the origin 

f EC-SOERS is still under discussion, it is clear that it provides a 

reat reproducibility and selectivity in the enhancement of Raman 

ignal of several analytes, which makes it a great method for the 

evelopment of both qualitative and quantitative analytical meth- 

ds [9–11] . 

Time resolved Raman spectroelectrochemistry (TR-Raman-SEC) 

s an instrumental technique in which Raman spectroscopy is used 

o interrogate the electrode surface during an electrochemical ex- 

eriment. This combination allows us the simultaneous generation 

nd characterization of a SERS substrate, tuning concomitantly the 

olecular resonances to the excitation wavelength, which provides 

nformation about the electronic states involved in SERS [4] . TR- 

aman-SEC is also a great method to resolve complex mixtures, 

here strong spectroscopic interferences are present [10] . 

To extract all the information contained in Raman spectra, a 

roper assignation of Raman bands is required. This assignation 

as been usually performed by comparison between Raman and 

R spectra, or by DFT calculations [12–14] . Nevertheless, this assig- 

ation is not always easy, since discordances between calculated 

nd experimental spectra can be significant. This aspect is espe- 

ially difficult when phenomena like SERS or EC-SERS are used to 

nhance the experimental signal, since these phenomena involve 

https://doi.org/10.1016/j.electacta.2021.138615
http://www.ScienceDirect.com
http://www.elsevier.com/locate/electacta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2021.138615&domain=pdf
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he interaction of molecules with metallic structures and the influ- 

nce of electric fields, which might not be easy to compute [15] . 

In this work, we present a new experimental methodology 

ased on TR-Raman-SEC that allows the acquisition of two differ- 

nt Raman spectroscopic signals of one analyte in a single exper- 

ment, thanks to the presence of two different Raman enhance- 

ent phenomena: EC-SERS and EC-SOERS. These phenomena pro- 

ide two different but characteristic spectroscopic fingerprints of 

nalytes. Therefore, we can perform a double detection of several 

nalytes with these two signals in a single TR-Raman-SEC experi- 

ent. 

To demonstrate the possibilities of the double spectroscopic fin- 

erprint provided by our methodology, we performed the detection 

f uracil (U) and 5-fluorouracil (5-FU), two analytes with relatively 

imple structure but with great relevance in biochemistry. 

U is a molecule present in several biological processes; from 

he formation of RNA to metabolic routes in some bacteria [16 , 17] .

t is also involved in the generation of several DNA mutations, 

18] . U is a key molecule in biology, and its derivatives have sev-

ral applications in pharmacology. A great example is 5-FU, an an- 

imetabolite drug widely used in the treatment of colorectal and 

reast cancer, among others, for the last 40 years [19–21] . This 

rug is rapidly included into the metabolism, where it inhibits the 

ctivity of the thymidylate synthase, hindering the conversion of 

ridine monophosphate into thymidine monophosphate and neg- 

tively affecting DNA replication [19 , 20] . However, the usage of 

-FU has some drawbacks, since it has been observed that 5-FU 

an be easily incorporated to RNA, disrupting its normal processing 

19 , 22 , 23] . 5-FU has been also identified as a source of DNA muta-

ions that might increase tumor evolution after treatment [20] . For 

hese reasons, a great interest exists on the development of facile, 

ensitive and selective analytical methods to detect and quantify 

oth, 5-FU and U. 

Traditionally, 5-FU and U analysis has been performed 

ith techniques such as liquid chromatography–mass spectrome- 

ry/mass spectrometry (LC-MS/MS) [24] , electrochemistry [25 , 26] 

nd fluorescence [27 , 28] . Some of them require a complex sam- 

le pretreatment and others can be sensitive to the presence of 

nterferences. 

SERS, however, has managed to overcome these problems. For 

xample, it has been used for in vivo measurements in tumor 

etection with very simple sample pretreatment [29 , 30] . In ge- 

omic analysis, SERS has been able to detect specific targeted DNA 

trands [31] or even specific genomic mutations in a single strand 

32 , 33] . Coupling of this technique with multivariate analysis has 

emonstrated to be a powerful tool to study complex systems, giv- 

ng, for example, important information about the structure of nu- 

leobases and their interactions [30 , 34] . 

In this work, we present a new methodology that allows the 

ouble detection of U and 5-FU, thanks to the EC-SERS and EC- 

OERS phenomena. This method can be used for a more reliable 

nalytical detection as well as providing more spectroscopic infor- 

ation of the structures involved in the electrode transformation, 

iving more data for possible computational calculations of spec- 

roelectrochemical systems. 

. Methods and materials 

.1. Reagents and solutions 

Perchloric acid (HClO 4 , 60%, Sigma-Aldrich), potassium chloride 

KCl, 99%, ACROS Organics), uracil (U, > 99%, Sigma-Aldrich), 5- 

uorouracil (5-FU, > 99% HPLC, Sigma-Aldrich). Reagents were used 

s received, without further purification. All solutions were pre- 

ared using ultrapure water obtained from a Millipore DirectQ pu- 
2 
ification system provided by Millipore (18.2 M Ω ·cm resistivity at 

5 °C). 

.2. Instrumentation 

.2.1. Time resolved Raman spectroelectrochemistry 

In-situ TR-Raman-SEC was performed with a customized 

PELEC-RAMAN instrument (Metrohm-DropSens), which included 

 785 nm laser source. The laser power was set at 102 mW (325 W

m 

−2 ) in all experiments. This instrument was connected to a Ra- 

an probe (DRP-RAMANPROBE, Metrohm-DropSens). A homemade 

ell for screen-printed electrodes (SPEs) was used during the ex- 

eriments. DropView SPELEC software (Metrohm-DropSens) was 

sed to control the instrument, which allowed getting real-time 

nd synchronized spectroelectrochemical data. An integration time 

f 1 s was used to obtain each Raman spectrum in all the TR- 

aman-SEC experiments. Spectral resolution was < 4 cm 

−1 . Sil- 

er SPEs (Ag-SPE) from Metrohm DropSens (DRP-C013) were used 

s electrochemical set-up. These electrodes consisted of a working 

lectrode of silver with a diameter of 1.6 mm, a counter electrode 

f carbon and a pseudo-reference of silver. 

Cyclic voltammetry was used as electrochemical technique to 

erform TR-Raman-SEC experiments. All potentials are referred to 

he pseudo-reference electrode of silver ( vs. Ag). Two voltammet- 

ic cycles were performed between −0.40 V and + 0.40 V, start- 

ng at 0.00 V in anodic direction for each experiment. A scan rate 

f 0.02 V s −1 and a step potential of 2 mV were set for all elec-

rochemical measurements. All solutions were prepared in 0.1 M 

ClO 4 and 10 −2 M KCl, with a concentration of analyte of 10 −3 M. 

hese experimental conditions were carefully chosen after a proper 

ptimization process where KCl concentration, pH and potential 

indow were evaluated. All experiments were performed thrice. 

.2.2. Computational methods 

All theoretical calculations were performed using the func- 

ional PBE0 [35] including dispersion correction with the Becke- 

ohnson damping scheme (D3BJ) [36 , 37] . For the description of the 

toms, basis def2-SVP [38] were used for non-metallic atoms and 

ANL2DZ [39] for silver atoms level of theory. The optimization 

as performed freezing the silver atoms, but without any restric- 

ion to the other atoms. The software package ORCA 4.2.1 has been 

sed for these DFT calculations [40 , 41] . 

. Results and discu ssion 

.1. Double fingerprint of one analyte in a single experiment 

TR-Raman-SEC allowed us to obtain the evolution of the Raman 

pectra on a Ag-SPE surface during a cyclic voltammetry experi- 

ent of a 10 −3 M U solution in 0.1 M HClO 4 and 10 −2 M KCl.

wo different Raman enhancement phenomena can be observed, 

ig. 1 , during the experiment. Fig. 1 A shows the cyclic voltam- 

ogram (CV) obtained during this spectroelectrochemistry experi- 

ent. When the applied potential reaches + 0.10 V, the formation 

f AgCl is observed [6] . Next, at + 0.35 V, the massive oxidation of

he silver electrode, from Ag 0 to Ag + , takes place. At this point, 

 notorious enhancement of the characteristic Raman signal of U 

801 cm 

−1 ) is observed due to the EC-SOERS effect [6 , 10 , 11 , 42 , 43]

orange line, Fig. 1 B). This enhancement reaches its maximum dur- 

ng cathodic scan, around + 0.30 V. At this point, the reduction of 

g + takes place, and the EC-SOERS effect starts to decrease. Fur- 

her, in the cathodic scan, AgCl deposited on the surface is re- 

uced to Ag 0 around −0.10 V. During this reduction, plasmonic sil- 

er nanostructures are produced on the electrode surface [43 , 44] . 

hese nanostructures generate a second Raman enhancement of 

nother Raman band of U (768 cm 

−1 ) due to EC-SERS effect (blue 
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Fig. 1. (A) Cyclic voltammogram of Ag-SPE in 10 −3 M U + 0.1 M HClO 4 + 10 −2 M KCl. Scan rate was 0.02 V s −1 . (B) VoltaRamangram (evolution of one Raman band with 

the applied potential) of characteristic Raman bands of EC-SERS (blue line) and EC-SOERS (orange line) of U. (C) Representation of the experimental Raman spectra of U for 

EC-SERS ( −0.10 V) and EC-SOERS ( + 0.32 V), where it is observed an overlapping of Raman bands. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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ine, Fig. 1 B). This effect reaches its maximum around −0.10 V and 

hen decreases to a lower but stable signal. This behavior could be 

elated with different processes: (1) the continuous modification of 

he nanostructures deposited on the electrode surface during AgCl 

eduction could lead to a loss of plasmonic properties, (2) the des- 

rption of the analyte, or (3) a change in the orientation of the 

olecule during the adsorption. 

An important detail should be denoted in Fig. 1 B. In this figure, 

wo different Raman shifts are plotted depending on the potential 

indow where the Raman enhancements were observed. Spectra 

hown in Fig. 1 C depicts the Raman spectra of U where the sig-

al due to EC-SOERS and EC-SERS phenomena is maximum. The 

aman spectrum observed in EC-SOERS (orange line, Fig. 1 C) has 

ome differences in the band Raman shifts with respect to the 

ne observed in EC-SERS (blue line, Fig. 1 C). Besides, it can be 

bserved that the band at 801 cm 

−1 for EC-SOERS and the band 

t 822 cm 

−1 for EC-SERS are partially overlapped. The shifting of 

he Raman bands can lead to some misunderstandings during the 

nterpretation of the evolution of Raman bands with the poten- 

ial along the experiment (voltaRamangrams). For example, Fig. 1 B 

hows that Raman intensity at 801 cm 

−1 is enhanced at poten- 

ials greater than + 0.20 V, due to EC-SOERS, but also at potentials 

elow 0.00 V, which might lead us to think that this Raman sig- 

al is enhanced twice because of EC-SOERS and EC-SERS phenom- 

na. However, from spectra in Fig. 1 C it must be concluded that 

his behavior is due to an overlapping of the bands linked to these 
3 
henomena. Therefore, we can deduce that two different spectra 

inked to the same molecule can be obtained, being related to the 

wo different Raman enhancement phenomena. 

Similar conclusions can be extracted from the study of 5-FU. 

ig. S1, in supplementary materials, shows the CV and voltaRaman- 

rams at two different Raman shifts during the TR-Raman-SEC ex- 

eriment. The CV (Fig. S1A) is almost identical to the one observed 

or U ( Fig. 1 A). As was described for U, it can be seen that some

aman shifts presents EC-SOERS effect (for example, 792 cm 

−1 ), 

ince the enhancement of the Raman signal at anodic potentials is 

bserved (orange line, Fig. S1B). Meanwhile, another Raman bands 

re enhanced at cathodic potentials due to EC-SERS effect (for ex- 

mple 764 cm 

−1 , blue line, Fig. S1B). It can be also observed that 

he evolution of 5-FU Raman spectra during the experiment shows 

ome overlapping of bands ascribed to EC-SOERS and EC-SERS phe- 

omena. It can generate some misunderstanding on the interpre- 

ation of Raman signals evolution. In this case, the signal at 792 

m 

−1 seems to have negative Raman intensity at negative poten- 

ials. This is due to the difficulty associated to the generation of a 

ood baseline that fits properly to all the Raman spectra obtained 

uring the experiment. Fig. S2 shows the Raman spectra corre- 

ponding to the maximum EC-SOERS and EC-SERS enhancement of 

-FU. The Raman signal at 792 cm 

−1 , which shows EC-SOERS en- 

ancement, corresponds to a valley in the EC-SERS spectra. This 

enerates an apparently anomalous behavior in the evolution of 

his Raman band, shown in Fig. S1B (orange line). 
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Fig. 2. (A) VoltaRamangram at 767 cm 

−1 related to EC-SERS effect (blue line), voltaRamangram at 792 cm 

−1 related to EC-SOERS effect (orange line) and CV (green line) 

of 5-FU during a TR-Raman-SEC experiment. (B) Raman spectra of 5-FU observed at + 0.32 V (EC-SOERS effect, orange line) and −0.10 V (EC-SERS effect, blue line), both 

in cathodic scan. Arrows in (B) indicates the Raman bands whose evolution is plotted in (A). Electrolytic medium was 10 −3 M 5-FU + 0.1 M HClO 4 + 10 −2 M KCl. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (A) VoltaRamangram at 768 cm 

−1 related to EC-SERS effect (blue line), voltaRamangram at 801 cm 

−1 related to EC-SOERS effect (orange line) and CV (green line) 

of U molecule during a TR-Raman-SEC experiment. (B) Raman spectra of U molecule observed at + 0.32 V (EC-SOERS effect, orange line) and −0.10 V (EC-SERS effect, blue 

line), both in cathodic scan. Arrows in (B) indicate the Raman bands whose evolution is plotted in (A). Electrolytic medium was 10 −3 M U + 0.1 M HClO 4 + 10 −2 M KCl. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Until now, we have analyzed the evolution of Raman signals of 

 and 5-FU during the first voltammetric cycle applied to the elec- 

rode. However, the behavior of EC-SOERS and EC-SERS responses 

ary when several CVs are performed, as is shown in Figs. S3 and 

4. In these figures, the voltaRamangrams for both EC-SOERS and 

C-SERS phenomena of U and 5-FU are presented along two con- 

ecutive CVs. U molecule seems to give similar Raman enhance- 

ents, no matter the scan (Fig. S3A and S3B), even though im- 

ortant differences are observed in the CVs (Fig. S3C). However, 

-FU molecule responses change significantly when two consecu- 

ive potential scans were carried out. VoltaRamangrams related to 

C-SERS effect show a peak 3.5 times more intense during the first 

ycle than in the second one (Fig. S4A). On the contrary, voltaRa- 

angrams linked to EC-SOERS effect show the opposite effect (Fig. 

4B). The changes observed in the CVs are very similar to those 

lotted for U molecule (Fig. S4C). 

To simplify the understanding of our results, a summary of the 

forementioned conclusions can be found in Figs. 2 and 3 . Fig. 2 A

hows the CV and the voltaRamangrams under the experimental 

onditions in which the maximum EC-SOERS and EC-SERS intensi- 

ies were registered for 5-FU. This means that in Fig. 2 A it is plot-

ed the signals in the cathodic region (from −0.10 to −0.40 V) for 

he first potential cycle, where the highest EC-SERS signal is regis- 

ered, and the signals in the anodic region (from −0.10 to + 0.40 V) 
4 
or the second potential cycle, where the highest EC-SOERS signal 

s registered. 

Several points should be noted about Fig. 2 . First, two different 

aman spectra have been obtained for the same molecule (5-FU) 

n one single experiment ( Fig. 2 B). The spectra differ in the num- 

er of observed bands, but the most representative Raman signals 

f 5-FU can be observed both at anodic and cathodic potentials. 

he differences can be related to the two different phenomena in- 

olved in the Raman enhancement during the experiment: EC-SERS 

nd EC-SOERS. It is believed that EC-SOERS mechanism should in- 

olve some kind of electromagnetic enhancement (EM), since the 

nalytical enhancement factors obtained with this method are too 

igh to attribute them only to a chemical enhancement [4 , 11 , 45] .

owever, the different Raman spectra observed in EC-SERS and EC- 

OERS suggest that the structures responsible for this EM are dif- 

erent in EC-SERS and EC-SOERS. The shifting of several peaks, as 

ell as the disappearance of many signals in EC-SOERS spectra, 

uggest that the interaction between the analyte and the metal- 

ic nanostructure responsible for each phenomenon should be sub- 

tantially different. 

This double fingerprint (EC-SERS and EC-SOERS spectrum) can 

e also observed for U molecule ( Fig. 3 ) in a similar way as for 5-

U molecule. When experiments shown in Figs. 2 and 3 are com- 

ared with a blank test, it can be observed that none of the as- 
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Fig. 4. Experimental EC-SERS (A) and EC-SOERS (B) spectra of 5-FU (blue lines) and U (orange lines) observed during a TR-Raman-SEC experiment. Spectra were registered at 

the potential where maximum Raman enhancement was observed. EC-SERS spectra were registered at −0.10 V during first cathodic scan. EC-SOERS spectra were registered 

at + 0.32 V during second cathodic scan. Peaks labeled with ∗ in (B) represent the Raman signal of perchlorate ion (HClO 4 0.1 M). Experimental conditions were the same as 

in Fig. 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Structure and atomic labeling of the studied analytes. X = F for 5-FU and 

X = H for U. 
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igned Raman bands of U or 5-FU are observed in the absence of 

hese molecules (Fig. S5) 

.2. Spectral differences 

Fig. 4 A shows the EC-SERS spectra of 5-FU and U during a TR- 

aman-SEC experiment, under the same experimental conditions 

resented in Figs. 2 and 3 . In this figure, it can be seen that the

aman spectra of the two molecules share many bands because of 

ts great structural similarity. Nevertheless, some differences can 

e observed between the EC-SERS spectra of 5-FU and U that can 

e analyzed as follows. 

EC-SERS spectra of U ( Fig. 4 A, orange line) is characterized by 

wo strong bands at 464 and 511 cm 

−1 . The assignation of these 

ands is not easy, to the best of our knowledge, these two bands 

ave not been reported over silver substrates previously, at least 

o with the high intensity observed in our experiments [46–48] . 

These differences between our results and the reported SERS 

pectra of U might be related to experimental conditions, such as 

H. Most authors have studied the SERS spectra of U and uracil 

erivatives in alkaline or neutral media, where several deproto- 

ated forms are present in solution. Under these conditions, ad- 

orption processes of these ions can be expected [46 , 49] . Our work, 

owever, is developed in acidic media (pH = 1, 0.1 M HClO 4 ), where

 molecule is presented in protonated form, affecting to the inter- 

ction between the molecule and the surface. The dynamic gener- 

tion of EC-SERS substrate is another crucial factor that can differ- 

ntiate our spectra, since it has been observed that potential can 

lay a huge role in U angle of adsorption on silver surfaces [47] . 

Another difference that we can observed between our EC-SERS 

pectra and those reported in bibliography is a noticeable red- 

hifting of the ring breathing band, which appears at 768 cm 

−1 

or U molecule in our experiment but has been usually reported 

round 800 cm 

−1 [46–48] . The shifting of this band has been usu- 

lly related to the presence of various tautomeric forms of U, prod- 

ct of the deprotonation of N 1 or N 3 ( Fig. 5 ) [46] . Usually, it has

een proposed that N 3 tautomer of U and 5-FU, rather than N 1 , 

s the main compound adsorbed on silver substrates [ 46–48 , 50] ,

dsorbing via the negatively charged nitrogen. One of the marker 

ands used to characterize this interaction is the one at 800 cm 

−1 

46 , 51] . In our experiment, however, the shifting of this band, as 

ell as the presence of a strong band at 1531 cm 

−1 , suggest that

he interaction between U and silver is not taking place following 

he traditional mechanism during EC-SERS. 
5 
The EC-SERS spectrum of 5-FU ( Fig. 4 A, blue line) can be an-

lyzed in a similar way as the U spectra. Again, the spectrum is 

ominated by two intense Raman bands at 453 and 507 cm 

−1 , 

howing the first band a red-shifting (~15 cm 

−1 ) respect to the 

ame band for U. The ring breathing band, appearing at 768 cm 

−1 , 

s also red-shifted ( > 30 cm 

−1 ) in comparison with those bands 

eported in SERS spectra of 5-FU on silver substrates in alkaline 

edia [51] . At higher Raman shift, we find two relatively intense 

ands, at 1551 and 1643 cm 

−1 , corresponding to the stretching 

ode of C = C and C = O. These two bands suffer a blue-shifting (20–

0 cm 

−1 ) with respect to the same bands for U. 

As it was exposed, the observed EC-SERS spectra of U and 5- 

U in our experiments seem to differ from those reported by other 

uthors, both in the number and shifting of Raman bands. These 

acts suggest that both molecules, in acidic media, do not interact 

ith silver surfaces in the same way as they do in alkaline media 

via the anionic N 3 tautomer). 

The EC-SOERS spectra, however, seem much more similar to 

he reported SERS spectra of both, U and 5-FU in alkaline media. 

C-SOERS spectrum of U ( Fig. 4 B, orange line) is dominated by a 

trong band at 801 cm 

−1 , related with the in-plane deformation of 

romatic ring. Another intense band can be observed at 1399 cm 

−1 . 

inally, it can be seen at 1626 cm 

−1 the band associated with the 

tretching of C = O. EC-SOERS spectrum of 5-FU ( Fig. 4 B, blue line)

s quite similar to the one observed for U, with the addition of 

ome new bands at 831 cm 

−1 , related with the out-of-plane C 6 -H 

istortion, and another intense band at 1340 cm 

−1 . C = O stretching 
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Table 1 

Raman wavenumbers (cm 

−1 ) of EC-SOERS and EC-SERS spectra of 5-FU and non-scaled, PBE0/(LANL2DZ,def2-SVP) wavenumbers of the structure I and 

II. 

Structure I EC-SOERS signal Structure II EC-SERS signal Assignment 

– – 400 – Scissoring C 2 –O and C 4 –O 

408 – – – Out of plane bend of C 6 –H + out of plane bend of ring 

451 – – 453 In plane bend C 2 –O and C 4 –O 

– – – 507 –

577 – 575 – Out of plane bending of N 1 –H 

– – – 606 –

– – 675 – Out of plane bending of N3H 

800 791 763 768 Ring breathing 

– – 763 – Out-of-plane bending of N 1 –C 2 –N 3 –C 4 
845 831 827 818 In-plane bending C 6 –N 1 –C 2 –N 3 + stretching C-F 

884 – 879 861 Out of plane bending C 6 –H 

1171 – 1178 – Scissoring C 6 –H and N 1 –H 

1302 1244 1305 – Stretching C- F + asymmetric stretching of N 

–C-N 

1384 1340 1357 – Stretching ring + symmetric rocking of C 6 –H and N1-H 

1430 1405 1406 – Asymmetric stretching N 1 –C 2 –N 3 + in-plane bending N 1 –H + stretching C-F 

1536 – 1534 1551 C 4 –C 5 stretching + in-plane bend N 1 –H + asymmetric stretching of C 6 –N 1 –C 2 
1675 – – – Asymmetric stretching of C 2 –O and C 4 –O 

1747 1673 – – Symmetric stretching C 2 –O & C 4 –O 

1767 – 1743 – Stretching of C 5 –C 6 + in-plane bend C 6 –H 

– – 1817 1643 Stretching C4-O 

– – 1862 Stretching C2-O 
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ode is present at 1673, 40 cm 

−1 higher than the same band for 

. 

It is noticeable the similarity of our EC-SOERS spectra of U 

nd 5-FU with respect to the SERS spectra of these compounds 

eported by other authors. This fact suggests that the interaction 

etween U and 5-FU and the structure responsible for EC-SOERS 

ould be similar to the interaction that takes place in SERS effect 

n alkaline media: adsorption of a deprotonated form of U or 5-FU 

n silver structures via the negatively charged N. 

.3. DFT calculations 

To shed more light on the spectra observed during the spec- 

roelectrochemistry experiment, we performed DFT calculations to 

valuate the possible presence of various protonated forms of U 

nd 5-FU. Two different structures; structure I and II (Fig. S6), were 

ptimized for each analyte as described above, resulting in a total 

f 4 simulated structures. All optimized structures can be found 

n supplementary materials. In all simulations, a cluster of 32 Ag 

toms was designed to emulate the surface of a silver nanostruc- 

ure, and a molecule of U or 5-FU was adsorbed on the (100) facet 

f the simulated cluster. In structure I , the molecule (U or 5-FU) 

s positioned perpendicular to the Ag surface, and in structure II , 

he molecule is positioned parallel to the surface. A remarkable 

ifference between structure I and II is the protonation state of 

olecule: in structure I , the N 3 atom of the adsorbed molecule 

as been deprotonated to ease the interaction with the silver sub- 

trate. However, in structure II , the molecule is in its neutral form 

nd it is adsorbed on the surface horizontally. 

Simulation of the Raman spectra of structure I and II of U and 

-FU were performed, and its comparation with the EC-SOERS and 

C-SERS for both analytes is represented in Tables 1 and 2 . In 

hese tables, non-scaled wavenumbers of optimized structures are 

hown. 

In Table 1 , it can be observed that a reasonable correlation ex- 

sts between EC-SOERS signal and predicted signals for structure 

 of 5-FU. The displacements and number of bands predicted for 

tructure I are similar to the experimental bands observed in EC- 

OERS. EC-SERS spectra of 5-FU, however, has more divergence 

etween experimental and predicted signals. First, neither of the 

imulated Raman predicts the existence of two bands at 450–500 

m 

−1 . Simulation of structure I reports a band at 451 cm 

−1 related 
6 
ith the in-plane bending (scissoring) of carbonyls. However, the 

and at 507 cm 

−1 remains unexplained. 

One interesting band is the breathing mode of ring, located 

round 750–800 cm 

−1 . For structure I of 5-FU, this band is cal- 

ulated at 800 cm 

−1 , and for structure II of same analyte it is 

alculated at 763 cm 

−1 ( Table 1 ). The same trend is observed 

or U, in Table 2 . This variability in the prediction should be re- 

ated with the protonation estate of the molecule, since the vi- 

rational modes associated to this band do not involve the vibra- 

ion of silver atoms; it only involves the vibration of the atoms 

f 5-FU or U. This divergence in the calculated frequencies can be 

xpected, since the resonant forms of N 3 deprotonated molecule 

structure I ) would increase bond order among the atoms conform- 

ng the ring, thus increasing the energy associated to the stretch- 

ng mode of these bonds. Similar conclusions can be extracted 

rom the comparison of the in-plane bending of ring, located at 

830 cm 

−1 . 

This variability in the in-plane deformation of ring modes is 

lso present in the experimental EC-SOERS and EC-SERS spectra. 

e propose that the molecular species involved in both phenom- 

na should be in different protonated forms, with the deprotonated 

orm of U and 5-FU probably being the one involved in EC-SOERS 

henomenon. 

Although it has been stablished that EC-SOERS is a phe- 

omenon that takes place in acidic media [6 , 11] , at pH much lower

han the pK a of 5-FU or U [51] , it is possible that the applied po-

ential during silver oxidation, potentials at which EC-SOERS is ob- 

erved, could be helping to break the bond between N-H, since it 

as been reported that anodic potential can modify the pK a of car- 

oxylic acids on silver substrates [52] . Moreover, it has been pro- 

osed that potential-assisted deprotonation of pyridinic nitrogen of 

denine can take place on gold surfaces [53] . 

One of the main differences between EC-SOERS and EC-SERS 

pectra of both analytes is the presence of C = C stretching band 

~1540 cm 

−1 ), which is notoriously intense for EC-SERS spectra 

ut is not even present in EC-SOERS. Our calculations suggest that 

n the two proposed structures this band should have a mod- 

rately intense Raman activity, so this remarkable difference be- 

ween spectra could be related to the selection rules involved 

n each phenomenon. Further theoretical and experimental efforts 

hould be done in order to find a reason for these changes in the 

umber of Raman bands between spectra. 
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Table 2 

Raman wavenumbers (cm 

−1 ) of EC-SOERS and EC-SERS spectra of U and non-scaled, PBE0/(LANL2DZ,def2-SVP) wavenumbers of the structure I 

and II. 

Structure I EC-SOERS signal Structure II EC-SERS signal Assignment 

– – 407 – Out of-plane bend of C5-H 

454 – – 464 in-plane symmetric bend of C –O 

– – – 511 –

561 – 571 578 in-plane ring bend 

595 – – – in-plane ring stretching 

603 – 603 627 out-of-plane bend of N1-H 

736 – 728 – out-of-plane bend of C5- H + out-of-plane bend of ring 

790 – 774 – out of plane ring deformation 

815 801 795 771 Ring breathing 

822 – 811 825 out-of-plane bend of C6-H, C5-H and C4 

– – – 1033 –

1209 1106 1214 1112 scissoring of H 

–N1-C6-H and H 

–C6-C5-H 

– – 1253 – rocking of N3-H, N1-H and C5- H + asymmetric stretching of C2-N3-C4 

– 1281 – – –

1392 – 1393 1379 rocking of N1-H, C5-H and C6-H 

– – 1420 – In-plane bend of N3-H, C5-H and C6-H 

1404 1399 1437 1443 in-plane bend of N1- H + symmetric stretching of C2-N3-C4 

1535 – 1525 1531 C4-C5 stretching + in-plane bend of N1- H + stretching of C6-N1 

1653 – – – asymmetric stretching of C –O + in-plane bend of N1-H 

1722 – 1690 – stretching C5-C6 + rocking H 

–C5-N1-H 

1746 1630 – – symmetric stretching C –O + in-plane bend of N1-H 

– – 1783 1615 stretching C4 = O 

– – 1826 Stretching C2 = O 

b

h

s

s

c

p

t

e

m

i

p

i

a

4

t

a

t

F

h

i

m

fi

e

a

p

p

y

o

p

b

v

E

m

D

c

i

C

c

d

a

m

J

d

a

W

V

r

F

i

A

r

A

B

n

P

f

c

E

J

r

s

h

s

t

S

Finally, we found a noticeable shifting in the carbonyl stretching 

ands (~1650 cm 

−1 ). For EC-SOERS spectra, this band appears at 

igher Raman shift than the same bands in EC-SERS spectra, which 

uggests that different interaction between oxygen and silver sub- 

trate is taking place in these phenomena. 

As has been experimentally demonstrated and theoretically dis- 

ussed, EC-SERS and EC-SOERS spectra provide a different finger- 

rint for the same molecule. Electrochemistry can be used for 

he generation of the two Raman signal amplification phenom- 

na. Therefore, a double fingerprint can be obtained for the same 

olecule, with TR-Raman-SEC being a double detection technique 

n a single experiment. This strategy could be used for analysis, 

roviding more reliable results for the identification of molecules 

n samples. In addition, DFT simulations provides new insights 

bout EC-SOERS. 

. Conclusions 

TR-Raman-SEC has been used to obtain, for the first time ever, 

wo characteristic spectroscopic fingerprints of the same analyte in 

 single experiment, as has been demonstrated using U and 5-FU, 

wo analytes of great relevance in biochemistry and pharmacology. 

or this purpose, two different Raman enhancement phenomena 

ave been electrochemically generated, EC-SERS and EC-SOERS, be- 

ng each phenomenon observable during different stages of the Ra- 

an spectroelectrochemistry experiment. These two spectroscopic 

ngerprints show differences between them, but correspond un- 

quivocally to the same analyte. 

DFT calculations has been performed to elucidate the inter- 

ction between substrate and analyte. It has been proposed the 

resence of potential-aided deprotonated species during EC-SOERS 

henomenon. 

We think that this methodology has a great potential in anal- 

sis, since the use of two Raman enhancement phenomena, each 

ne providing a unique fingerprint of analyte, can increase the 

ower of Raman spectroscopy to resolve complex interferences 

etween various analytes. Further theoretical studies could pro- 

ide more information about the processes taking place during 

C-SOERS and EC-SERS, increasing the analytical potential of this 

ethodology. 
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