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Highlights
Fungal pathogens have evolved anticipa-
tory behaviors that protect against immi-
nent challenges in the host, such as
immune attack.

These anticipatory behaviors are reminis-
cent of core stress responses in model
yeasts, in that they exploit one type of
signal to mount protective responses
against a second type of signal that is
likely to follow the first.

Anticipatory immune evasive responses
differ between fungal pathogens, proba-
In certain niches, microbes encounter environmental challenges that are temporally
linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory
responses where the initial challenge simultaneously activates pre-emptive protec-
tion against the second impending challenge. The accumulation of anticipatory re-
sponses in domesticated yeasts, which have been termed 'adaptive prediction',
has led to the emergence of 'core stress responses' that provide stress cross-
protection. Protective anticipatory responses also seem to be common in fungal
pathogens of humans. These responses reflect the selective pressures that these
fungi have faced relatively recently in their evolutionary history. Consequently,
some pathogens have evolved 'core environmental responses' which exploit host
signals to trigger immune evasion strategies that protect them against imminent
immune attack.
bly because these behaviors evolve rap-
idly depending on the nature of the
selective pressures these fungi face and
the energetic costs of the protective
response.

Anticipatory immune evasion represents
a potential target for antifungal therapy
as blocking this response exposes the
fungus to immune clearance and can at-
tenuate fungal virulence.
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Introduction
Fortunately, of the millions of fungal species that inhabit our planet [1], only several hundred fungal
species cause disease in humans [2]. These have arisen within the Ascomycota, Basidiomycota,
and Zygomycota [3], and this evolutionary diversity presents significant challenges for the diagnosis
and treatment of potentially lethal invasive fungal infections [4]. The incidence of these infections
has increased in recent decades, largely because of the rising numbers of patients undergoing pro-
cedures that render them immunocompromised and, consequently, susceptible to systemic fungal
infection. Even with therapy, mortality rates for these infections remain extremely high, with some
reaching over 50% [4]. More effective antifungal therapies are required to address this challenge
[4], as well as to address the threat of new emerging fungal pathogens [5].

The diversity of lifestyles displayed by pathogenic fungi also represents a significant challenge for de-
veloping broad-spectrum antifungal therapies. Some pathogens normally live in the environment,
and yet have evolved traits that make them potent opportunistic pathogens (e.g., Aspergillus
fumigatus). Some are normally associated with animal reservoirs, but can cause systemic infections
even in healthy individuals (e.g., Cryptococcus, Histoplasma, and Coccidioides species). Others
exist as commensals in the microbiota of healthy individuals but can cause infection when immune
defenses or the local microbiota become compromised (e.g., Candida species). Certain fungal
pathogens have become so specialized that they are now obligately associated with a specific
mammalian host (e.g., Pneumocystis species). Despite the diversity of their lifestyles, to colonize
humans, all fungal pathogens, with the possible exception of Pneumocystis, require flexible nutrient
adaptation, robust stress responses, and the ability to evade our immune defenses. These fitness
attributes are integral to their pathogenicity [6,7].

In some cases, fungal pathogens have evolved anticipatory protective responses that are thought
to enhance their fitness in the host [8]. These anticipatory responses, which have been called
'adaptive prediction' [9], evolve in microbes that occupy reasonably predictable niches where
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one type of environmental challenge is frequently followed by a second. This predictability allows
the microbe to exploit the first signal to activate a pre-emptive response that protects against the
second imminent challenge (Figure 1). Hence, anticipatory responses represent an evolutionary
'memory' of recent selective pressures that the fungus has faced [8]. An understanding of
these selective pressures, and their corresponding adaptive responses, will highlight potential
points of fragility in fungal pathogens that represent effective targets for novel antifungal therapies.
Therefore, we discuss emerging information about anticipatory protective responses in fungi and
their evolution. We suggest that these behaviors represent different types of core environmental
response, and that they might be targeted therapeutically.

Classical Stress Responses
Anticipatory protective responses are generally based on classical responses to environmental
stress. All forms of life must adapt effectively to environmental stresses, such as changes in
temperature, water balance, pH, and redox status. Consequently, fungi have inherited evolutionarily
ancient mechanisms for dealing with such stresses, and their dissection in model yeasts, such as
Saccharomyces cerevisiae and Schizosaccharomyces pombe, underpins our understanding of cor-
responding responses in pathogenic fungi. The sensitivity to the input signal and the robustness of the
response differ between fungal species, but in general, the nature of the response and core regulatory
circuitry are conserved (Figure 2A). However, in many pathogens, the regulation of stress responses
and virulence has become entwined.

The heat-shock response is characterized by the induction of heat-shock proteins, which pro-
mote protein disaggregation, recycling and refolding, and the restoration of proteostasis. The
response, which leads to induced thermotolerance, is regulated by an autoregulatory circuit in-
volving the heat-shock transcription factor Hsf1, and the chaperone Hsp90 [10]. Interestingly,
in Candida albicans, Hsp90-Hsf1 regulates genes involved in virulence as well as thermal
adaptation [11]. Clearly, the heat-shock response has become integrated with the regulation of
cellular morphogenesis and other key virulence factors inC. albicans and in other fungal pathogens
[10,12].

Maintaining osmohomeostasis is also essential for fungal survival. The regulation of intracellular
osmolyte concentrations and turgor pressure is dependent on the evolutionarily conserved
stress-activated protein kinase (SAPK: Hog1 in S. cerevisiae and C. albicans; Sty1 in Sz.
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Figure 1. Anticipatory Responses Enhance Protection. In a niche where an environmental input of one type (red) is
often followed by a second type (blue), in the absence of an anticipatory response (left panel) the two corresponding
adaptive responses act independently to provide a degree of protection. In those microbes that have evolved an
anticipatory response (right panel), the response to the second impending environmental input is activated following
exposure to the first input, even before the cells are exposed to the second environmental input (e.g., adaptive prediction
[9]). This can improve fitness and survival by enhancing the degree of protection against the second environmental input [9]
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Figure 2. Classical versus Core Stress Responses. (A) Examples of evolutionarily conserved classical stress responses
and regulators in Saccharomyces cerevisiae (see main text). The heat-shock response is regulated by an autoregulatory
circuit involving Hsf1 and Hsp90 (and/or Hsp70) [10,110] and leads to the activation of heat-shock proteins, such as
chaperones, that restore protein homeostasis. The oxidative stress response is regulated by Yap1 and Skn7, and results
in the synthesis of reactive oxygen species (ROS)-detoxifying enzymes, antioxidants, and redox repair [111,112].
Hyperosmotic stress activates Hog1 signaling, leading to the accumulation of osmolytes and the restoration of turgor
pressure [113]. Alkaline pHs trigger truncation and activation of Rim101 (PacC) and regulate the plasma membrane
H+-ATPase as well as transporter synthesis and activity. (B) In S. cerevisiae, these stresses also activate the core
stress response (CSR), which involves the activation of stress genes containing STRE elements [19,33], leading to the
upregulation of many of the functions also activated by classical stress regulators (A). The CSR is downregulated by
glucose via cAMP-PKA (protein kinase A) signaling [34].
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pombe; SakA in A. fumigatus). Osmoregulation involves crosstalk between mitogen activated
protein kinase (MAPK) and cAMP-protein kinase A (PKA) signaling in fungal pathogens [13,14],
and in C. albicans Hog1 promotes resistance to additional stresses such as oxidative, heavy
metal, and cell wall stresses [15]. Significantly, Hog1/SakA signaling influences key virulence fac-
tors and enhances virulence inC. albicans, Cryptococcus neoformans, and A. fumigatus [16–18].
Therefore, this evolutionarily conserved pathway plays key roles in fungal pathogenicity as well as
environmental adaptation.
Trends in Microbiology, Month 2020, Vol. xx, No. xx 3
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Fungi respond to oxidative stress by inducing genes involved in the detoxification of reactive ox-
ygen species (ROS) and the repair of oxidative damage [19–22]. The transcriptional response is
coordinated by evolutionarily conserved AP-1-like transcription factors and response regulators.
The AP-1-like factors include Yap1 in S. cerevisiae, A. fumigatus, andC. neoformans, Pap1 in Sz.
pombe, and Cap1 in C. albicans; and response regulators include Skn7 in S. cerevisiae and
C. albicans. In Sz. pombe, Pap1 is activated by the Sty1 SAPK, but in C. albicans, Cap1 is acti-
vated independently of the Hog1 SAPK [21,23]. Therefore, while these stress pathways have
been conserved, links between them have diverged.

Responses to pH are significant for pathogenic fungi in niches such as the lung, mucosal and
gastrointestinal compartments, and during survival in the phagosome/phagolysosome.
Orthologous transcription factors drive responses to alkaline pH in yeasts (Rim101) and fila-
mentous fungi (PacC) [24,25]. Significantly, Rim101/PacC signaling plays major roles in fungal
pathogenicity, over and above imparting pH tolerance. In C. albicans, Rim101 upregulates
genes involved in hyphal development, adhesion, and virulence [26,27]. In A. fumigatus,
PacC controls tissue invasion during pulmonary aspergillosis [28]. In C. neoformans,
Rim101 signaling modulates melanin production, capsule synthesis, and titan cell formation
[24].

Clearly, key signaling pathways involved in pH, oxidative, osmotic, and thermal stress adaptation
have become integral to the regulation of virulence factors in major fungal pathogens of humans.

Anticipatory Stress Responses
Studies of 'classical' stress responses are defining fungal adaptation mechanisms for spe-
cific stresses under defined laboratory conditions. However, host niches are complex and
dynamic: complex in that fungal pathogens are exposed to multiple stimuli, and dynamic
in that these stimuli change over time. It is important to understand how adaptation to one
environmental input affects subsequent responses to other inputs, as these effects can be
dramatic [25,29].

Adaptation to a mild stress provides transient protection against a subsequent acute dose of the
same stress by activating a so-called 'molecular memory' [30], one example of which is induced
thermotolerance. In some cases, one type of stress can provide protection against subsequent
exposure to a different stress, yielding stress cross-protection. For example, in S. cerevisiae,
exposure to thermal, salt, or nutrient stress protects against subsequent freezing [31], and salt
protects against subsequent oxidative stress [32]. This cross-protection is mediated by the
core stress response (CSR).

The CSR was first revealed by genome-wide transcriptional profiling of S. cerevisiae cells exposed
to diverse environmental insults. This revealed a core set of genes that is commonly induced by dif-
ferent stresses, which include heat-, oxidative-, osmotic-, and pH-stress genes, as well as carbo-
hydrate metabolism and energy-generating genes [19,33]. This response is activated by the
transcription factors Msn2 and Msn4 [19,33], and is downregulated by cAMP-PKA signaling [34]
(Figure 2B). The evolutionarily related pathogenic yeast, Candida glabrata, exhibits an analogous
CSR that is also regulated by Msn2 and Msn4 [35]. Sz. pombe is evolutionarily distant from
these yeasts, but also displays a CSR. However, this CSR is dependent on the Sty1 SAPK
(Hog1 orthologue) and Atf1, rather than Msn2/4 orthologues [20]. A. fumigatus also displays a
core response to heat, oxidative, and osmotic stresses [36] which is partially dependent on
SakA (Hog1 orthologue) signaling [37]. Therefore, evolutionarily diverse fungi display CSRs, but
there are differences in the regulatory circuitry involved.
4 Trends in Microbiology, Month 2020, Vol. xx, No. xx
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Intriguingly, some pathogenic fungi display large CSRs (e.g., C. glabrata and A. fumigatus), but
others do not (e.g., C. albicans). C. albicans displays minimal overlap between the gene sets in-
duced by oxidative, osmotic, thermal, and heavy-metal stresses, and minimal cross-protection
between these stresses [21,38]. Furthermore, in C. albicans, Msn2/4 homologues play no obvi-
ous roles in heat, osmotic, ethanol, or nutrient responses [39]. This raises interesting questions.
How did CSRs evolve? If the fitness advantages offered by stress cross-protection drove the
evolution of CSRs in many fungi, why not in C. albicans?

CSRs are energetically demanding [40,41]. Therefore, CSRs are not likely to have arisen in one
step, in their entirety. Rather, CSRs probably emerged in a stepwise fashion, through the accu-
mulation of individual protective responses [41] (Figure 3). During their domestication,
S. cerevisiae cells probably evolved regulatory circuitry that permitted anticipation of impending
environmental challenges, which has been termed 'adaptive prediction'. For example, fermenta-
tion leads to a rise in temperature, which is followed, predictably, by a switch from fermentative to
respiratory growth and, consequently, an increase in intracellular ROS. Therefore, S. cerevisiae
'learned' to exploit thermal stress to activate oxidative stress resistance even before ROS levels
increase [41]. S. cerevisiae can rapidly evolve anticipatory behaviors, within 50–150 generations
[42]. Therefore, anticipatory protective responses can arise rapidly in niches that change in a rea-
sonably predictable manner.

Therefore, the development of anticipatory protective responses probably underlies the develop-
ment of CSRs in domesticated yeasts, such as S. cerevisiae and Sz. pombe [19,20,33], and in
environmental fungi, such as Aspergillus species [36]. Why then does one pathogenic Candida
species display a large CSR (C. glabrata [35]) whereas another does not (C. albicans [21,38])?
The answer probably lies in the nature of the selective pressures that these species have faced
in their recent evolutionary histories.

Classical Immune Evasion
Host immunity provides a major barrier to colonization by opportunistic fungal pathogens [43,44].
Innate immune cells detect fungal cells by recognizing pathogen-associated molecular patterns
(PAMPs) on the fungus via host pattern-recognition receptors (PRRs) [45,46]. Host cells express
a variety of Toll-like and C-type lectin receptors that recognize mannan, β-glucan, melanin, and
chitin in fungal cell walls. The recognition of β-glucan by dectin-1 plays a major role in the activa-
tion of proinflammatory responses [47,48]. Mannan and melanin also simulate inflammation,
whereas chitin exerts anti-inflammatory effects [49–51]. However, antifungal immune responses
are influenced by the spatial organization of these components in the fungal cell wall [52] and
cooperativity between the host receptors that recognize them [49,53]. Proinflammatory PAMP–
PRR interactions lead to the phagocytic uptake of the fungus, phagolysosomal maturation and
acidification, and the bombardment of the fungus with reactive chemical species and other
toxic molecules [43]. Cytokine signaling promotes the recruitment of additional innate immune
cells to infection sites and, in the longer term, activation of adaptive immunity [54].

Primary fungal pathogens, such as Histoplasma capsulatum, Blastomyces dermatitidis,
Coccidioides immitis, Paracoccidioides brasiliensis, and Cryptococcus gattii, must either evade
or subvert immune clearance mechanisms. Immune evasion strategies are also relevant to oppor-
tunistic fungal pathogens, such asC. albicans, C. glabrata,A. fumigatus, andC. neoformans [4]. Of
these,C. albicans is intriguing because it is generally thought to be associated with warm-blooded
animals [55] and is carried as a commensal in the gastrointestinal and urogenital tracts of many
healthy individuals [56,57]. Therefore, this opportunistic pathogen must have evolved effective im-
mune evasion strategies. We divide these into 'classical' and 'anticipatory' immune evasion
Trends in Microbiology, Month 2020, Vol. xx, No. xx 5
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strategies, the latter being triggered before immune cells are encountered. However, this division
may be less clear than inferred.

Fungal pathogens exhibit three types of classical immune evasion strategy: 'attack', 'control', and
'stealth' [58,59]. Fungal attack involves the secretion of molecules that actively counteract im-
mune components. These include the induction of superoxide dismutases (SODs) that detoxify
host-generated ROS, expression of secreted aspartate proteases that degrade host proteins
[60–62], and the secretion of the toxin, candidalysin, by C. albicans [63]. Hypha formation
helps C. albicans to escape from, and kill, phagocytes through the induction of the NRLP3
inflammasome via candidalysin or pyroptosis [64–66]. C. albicans can also kill macrophages
through metabolic competition for glucose [66]. Meanwhile, A. fumigatus attenuates immune
cell function by synthesizing gliotoxin [67] and by shedding galactosaminogalactan, which in-
duces neutrophil killing through the activation of natural killer (NK) cells [68].

Fungal control involves the suppression or manipulation of immune defenses [58,59]. For example,
C. neoformans,C. albicans,C. glabrata,Candida krusei, andH. capsulatum have developedmech-
anisms that inhibit phagosomal maturation, allowing them to thrive within phagocytes [69–72],
and some fungi can escape phagocytic cells via nonlytic expulsion [73,74]. C. albicans synthe-
sizes farnesol, which attenuates cytokine production by macrophages [75], and has also
evolved mechanisms that inhibit fungal killing by the complement system [76].

Stealth is where the fungus evades immune recognition, thereby avoiding phagocytic attack
[58,59]. C. albicans activates yeast–hypha morphogenesis, which reduces the ease with which
immune cells can phagocytose the fungus, partly through reduced exposure of proinflammatory
PAMPs [77] and partly through difficulties in engulfing long fungal filaments [78]. However,
macrophages that attempt to engulf lengthy hyphae can form 'frustrated phagosomes' which,
while not fully engulfing the hypha, can inhibit its growth [79].

Similarly, C. neoformans evades phagocytosis by forming large titan cells [80,81], and by synthe-
sizing a thick polysaccharide capsule that masks immunostimulatory cell wall components [82].
Similarly, other pathogens mask immunostimulatory components in their cell walls: C. albicans,
H. capsulatum, and A. fumigatus all mask β-glucan and melanin with mannan, α-glucan, and
the rodA hydrophobin, respectively [83–85].

Clearly, evolutionarily divergent fungal pathogens have evolved an array of strategies to evade
immune clearance.

Anticipatory Immune Evasion
As described earlier, some fungi have evolved anticipatory responses that protect them against
impending stresses [9]. We argue that certain immune evasion strategies also represent anticipa-
tory behaviors because, in these cases, the fungus activates the response before encountering
immune cells.
Figure 3. Core Stress Responses Probably Evolved via the Accumulation of Anticipatory Protective
Responses. (A) Four hypothetical environmental inputs trigger evolutionarily conserved stress pathways, each with its
own specific regulator (red, blue, green, brown), to activate input-specific responses. The red pathway has an additiona
regulator (black). Over evolutionary time (broken lines from A to B to C to D), additional stress pathways come under the
control of the black regulator: (B) blue pathway; (C) green pathway; and (D) brown pathway. In the process, the black
regulator evolves from a stress-specific regulator into a core stress regulator capable of providing stress cross-protection
At each stage (from A to B to C to D), the shaded boxes illustrate the sequential addition of pathways that come under the
regulation of this core stress regulator during the evolution of this hypothetical core stress response.
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Some forms of anticipatory immune evasion represent fungal attack. For example, C. albicans
upregulates oxidative stress genes in response to glucose [25]. Plasma levels of glucose are
sufficient to enhance resistance to acute oxidative stress, and to protect the fungus against
subsequent exposure to neutrophils. Therefore, glucose triggers an anticipatory response
that actively counteracts immune components (ROS) to protect C. albicans against impending
phagocytic attack [6]. The early activation of efficient micronutrient-scavenging mechanisms by
C. albicans during hyphal development [86,87] also appears to represent an anticipatory
response, as the fungus prepares for iron- and zinc-limiting environments before the hypha
penetrates tissue to enter these environments [88]. Similarly, the induction of SOD genes
during hyphal growth [62] protects the invading hypha in anticipation of impending immune at-
tack and ROS exposure [89].

Other forms of anticipatory immune evasion are more representative of fungal stealth. For exam-
ple, C. neoformans exploits elevated carbon dioxide or bicarbonate concentrations to activate
melanin and capsule production, which provides protection against imminent immune attack
[90]. C. albicans exploits other host signals, such as lactate, hypoxia, iron limitation, and neutral
pH, to activate masking of the proinflammatory PAMP, β-glucan [91–95]. This β-glucan masking
reduces phagocytic recognition and attenuates immune responses against the fungus
[91,93,94,96]. β-Glucan 'masking' is mediated by the exoglucanase, Xog1, which 'shaves' ex-
posed β-glucan from the cell surface [97]. Some other, but not all, pathogenic Candida species
display hypoxia-induced β-glucan masking, but there is no obvious relationship between phylog-
eny and phenotype [93]. Meanwhile, an analogous anticipatory response has arisen in the evolu-
tionarily distant species, H. capsulatum. This fungus activates the Eng1 endoglucanase in its
pathogenic yeast form, but not in the saprobic hyphal form, leading to reduced β-glucan expo-
sure and attenuated immune detection [98].

Clearly, certain pathogenic fungi have evolved mechanisms by which they can exploit specific
host signals to trigger anticipatory responses that protect against impending immune attack.
The lack of phylogenetic clustering for β-glucan masking phenotypes, for example, is consistent
with the idea that these anticipatory responses have evolved recently in evolutionary terms, in re-
sponse to temporally related, niche-specific, selective pressures.

Parallels between Anticipatory Responses
There are ineluctable parallels between CSRs and anticipatory immune evasion. Both provide
protection against an imminent challenge, albeit an environmental stress in one case and phago-
cytic attack in the other. Bothmust provide fitness advantages that outweigh the energetic cost of
activating the pre-emptive response [40,41]. In both cases, this energetic cost must impose a
selective pressure to disarm the anticipatory response should the fitness benefits no longer out-
weigh the cost, that is, should the fungus evolve a new niche. This could explain the lack of a CSR
in C. albicans.

In which case, why does another opportunistic pathogen, C. glabrata, retain a CSR [35]?
C. glabrata is more closely related to S. cerevisiae than to C. albicans [99]. However, given the
speed with which anticipatory responses appear to evolve [42] this is unlikely to account for
their CSR differences. Instead, unlikeC. albicans, C. glabratamight have retained an environmen-
tal reservoir [100] in which a CSR provides a fitness advantage. Alternatively, C. glabrata might
have evolved (or retained) a CSR because its infection strategy differs from that of C. albicans
[88,101]. C. albicans generally persists in the host by evading phagocytotic attack. By contrast,
C. glabrata is able to survive phagocytosis and replicate within macrophages [88,101], a strategy
presumably enhanced by the CSR.
8 Trends in Microbiology, Month 2020, Vol. xx, No. xx



Outstanding Questions
• What are the net fitness benefits
of anticipatory immune evasion in
particular niches? For example, to
what extent doesβ-glucanmasking en-
hance the colonization of C. albicans in
mucosal niches, in tissues, and in the
bloodstream. Does β-glucan masking
provide protection after phagocytosis
by innate immune cells?

• Does the core stress response enhance
the fitness of C. glabrata after
phagocytosis by innate immune cells?

• Does anticipatory immune evasion
protect against amoebic predation,
and hence offer fitness benefits in
environmental niches?

The answers to these questions will
help to reveal the cost-benefits of cer-
tain types of anticipatory response in
pathogens with different lifestyles.

• How rapidly can anticipatory re-
sponses emerge in a diploid fungus
like C. albicans?

• How quickly are anticipatory responses
lost once the temporal links between
thedriving selective pressures are lost?

Addressing these questions will help
us to understand the rate at which
anticipatory protective responses can
emerge and be lost.

Trends in Microbiology
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Concluding Remarks and Future Perspectives
To summarize, anticipatory protective responses are widespread in fungi. Examples have been
reported in domesticated yeasts, environmental fungi, and fungal pathogens. In some cases,
the accumulation of anticipatory protective responses appears to have led to the emergence of
CSRs, and in others to the accumulation of pre-emptive immune evasion mechanisms. In
essence, anticipatory stress responses (CSRs) and anticipatory immune evasion represent
different types of core environmental response (Figure 4). C. albicans, C. glabrata, and many
other contemporary fungal species simply display core environmental responses that have
been evolutionarily tuned to the corresponding niche.

The elaboration of core environmental responses is of interest both academically and translationally
(see Outstanding Questions). Anticipatory protective responses appear to evolve with alacrity,
emerging rapidly within specific niches, or fading once their energetic costs outweigh their fitness
benefits. Therefore, anticipatory protective responses probably reflect, with reasonable accuracy,
the selective pressures that the organism faces within the niche where it has recently evolved.
For some fungi, this niche might be obvious, but for others, this is not the case. For example,
C. albicans has been isolated from the environment [55,102–104], but these isolations might rep-
resent contamination by a warm-blooded animal. Does C. glabrata occupy an environmental
niche, as suggested by bioinformatic studies [100]? Unbiased examination of their anticipatory pro-
tective responses would provide valuable clues about the niches in which these human commen-
sals have actually evolved. Similarly, the definition of anticipatory protective responses in newly
discovered fungi would provide valuable insights into their niches and lifestyles. Such responses
could be probed by phenotypic screening for cross-protection, for example.

An understanding of anticipatory protective responses also offers translational opportunities. For
example, dissecting the mechanisms that underlie fungal immune evasion will reveal strategies by
which this immune evasion might be blocked. This has been demonstrated for lactate- and
hypoxia-induced β-glucan masking in C. albicans, where pharmacological inhibition of secreted
exoglucanase has been shown to increase the immune visibility of C. albicans and reduce its
• What types of protective anticipatory
behavior are present in newly discov-
ered fungal species, or in fungal spe-
cies whose niche evolutionary has
not been well defined?

Given the speed with which protective
anticipatory behaviors emerge, an
understanding of these behaviors would
shed light on the selective pressures
that have been faced by a fungal
species in their recent evolutionary
history, and hence provide valuable
clues about their niche.

• Do small-molecule inhibitors of antici-
patory immune evasion enhance im-
mune recognition and clearance in
animal models of fungal infection?

• Do such inhibitors enhance therapy
when used in combination with anti-
fungal drugs in clinical use?

These questions address the potential
therapeutic benefits of targeting
anticipatory immune evasion.

TrendsTrends inin MicrobiologyMicrobiology

Figure 4. Comparison of Core Environmental Responses in Saccharomyces cerevisiae andCandida albicans
The core stress response in S. cerevisiae is essentially a core environmental response that, through Msn2/Msn4- and protein
kinase A (PKA)-mediated signaling, controls the expression of core stress genes containing the STRE element to drive
anticipatory responses that promote stress cross-protection (see main text). C. albicans displays a different type o
core environmental response that exploits specific host signals (lactate, hypoxia, iron limitation, and alkaline pH) to trigge
β-glucan masking and, consequently, immune evasion. These anticipatory responses are triggered by signal-specific
upstream pathways, which converge on PKA signaling, to protect against impending immune attack [91,93–95]. These
core environmental responses reflect the niches in which these domesticated and pathogenic yeasts have recently
evolved (see main text).
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virulence [97]. Therefore, drugs that block fungal immune evasion [97], or that promote exposure
of proinflammatory PAMPs by modulating cell wall remodeling pathways [105], might prove use-
ful for antifungal therapy. Such drugs could conceivably be useful for the treatment of systemic
infections, but would not assuage immunopathological conditions such as vulvovaginal candidi-
asis or psoriasis, for example [106,107]. By analogy, agrochemicals that block anticipatory pro-
tective responses in crop pathogens, or enhance their exposure of molecular signatures that
trigger plant immunity, could potentially help to address threats to food security. The lifestyles
of plant and human pathogens differ significantly, and therefore the nature of their anticipatory
protective responses is likely to differ too. Hence, the development of an agrochemical that
blocks these responses is unlikely to compromise antifungal therapy in the clinic. This would
be infinitely preferable to the agricultural usage of azoles, which has led to the emergence of
drug-resistant strains of A. fumigatus in the clinic [108,109].
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