1,238 research outputs found

    Dimension Distortion by Right Coset Projections in the Heisenberg Group

    Full text link
    We study the family of vertical projections whose fibers are right cosets of horizontal planes in the Heisenberg group, Hn\mathbb{H}^n. We prove lower bounds for Hausdorff dimension distortion of sets under these mappings, with respect to the Euclidean metric and also the natural quotient metric which we show behaves like the Euclidean metric in this context. Our bounds are sharp in a large part of the dimension range, and we give conjectural sharp lower bounds for the remaining range. Our approach also lets us improve the known almost sure lower bound for the standard family of vertical projections in Hn\mathbb{H}^n for n2n \geq 2

    Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, fat, protein, and nonfiber carbohydrate

    Get PDF
    Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirementsseries is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NRC (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils, and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 times into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models derived with random study effects demonstrated poor repeatability of fit in independent evaluation. Similar equations derived without random study effects showed improved fit against independent data and little evidence of biased parameter estimates associated with failure to include study effects. The equations derived in this analysis provide interesting insight into how NDF, starch, FA, and CP digestibilities are affected by intake, feed type, and diet composition

    Gold nanoparticle coated silicon tips for Kelvin probe force microscopy in air

    Get PDF
    Abstract The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential maps, we have evaluated high aspect ratio conductive tips created by depositing gold nanoparticles on standard silicon tips. Besides the already known general topographic resolution enhancement offered by these modified tips References [1] L

    The Layer 0 Inner Silicon Detector of the D0 Experiment

    Full text link
    This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.Comment: 28 pages, 9 figure

    Scalar wormholes with nonminimal derivative coupling

    Get PDF
    We consider static spherically symmetric wormhole configurations in a gravitational theory of a scalar field with a potential V(ϕ)V(\phi) and nonminimal derivative coupling to the curvature describing by the term (ϵgμν+κGμν)ϕ,μϕ,ν(\epsilon g_{\mu\nu} + \kappa G_{\mu\nu}) \phi^{,\mu}\phi^{,\nu} in the action. We show that the flare-out conditions providing the geometry of a wormhole throat could fulfilled both if ϵ=1\epsilon=-1 (phantom scalar) and ϵ=+1\epsilon=+1 (ordinary scalar). Supposing additionally a traversability, we construct numerical solutions describing traversable wormholes in the model with arbitrary κ\kappa, ϵ=1\epsilon=-1 and V(ϕ)=0V(\phi)=0 (no potential). The traversability assumes that the wormhole possesses two asymptotically flat regions with corresponding Schwarzschild masses. We find that asymptotical masses of a wormhole with nonminimal derivative coupling could be positive and/or negative depending on κ\kappa. In particular, both masses are positive only provided κ<κ10\kappa<\kappa_1\le0, otherwise one or both wormhole masses are negative. In conclusion, we give qualitative arguments that a wormhole configuration with positive masses could be stable.Comment: 17 pages, 8 figure

    The Raychaudhuri equations: a brief review

    Get PDF
    We present a brief review on the Raychaudhuri equations. Beginning with a summary of the essential features of the original article by Raychaudhuri and subsequent work of numerous authors, we move on to a discussion of the equations in the context of alternate non--Riemannian spacetimes as well as other theories of gravity, with a special mention on the equations in spacetimes with torsion (Einstein--Cartan--Sciama--Kibble theory). Finally, we give an overview of some recent applications of these equations in General Relativity, Quantum Field Theory, String Theory and the theory of relativisitic membranes. We conclude with a summary and provide our own perspectives on directions of future research.Comment: 35 pages, two figures, to appear in the special issue of Pramana dedicated to the memory of A. K. Raychaudhur

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    Get PDF
    In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Delta alpha(ML), YREC similar to 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H]- -0.5)

    Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid from a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut.

    Get PDF
    In this study, samples from the 2013-2016 West African Ebola virus outbreak from patients in Guinea with Ebola virus disease (EVD) were analyzed to discover and classify what other pathogens were present. Throat swabs were taken from deceased EVD patients, and peripheral blood samples were analyzed that had been taken from patients when they presented at the treatment center with acute illness. High-throughput RNA sequencing (RNA-seq) and bioinformatics were used to identify the potential microorganisms. This approach confirmed Ebola virus (EBOV) in all samples from patients diagnosed as acute positive for the virus by quantitative reverse transcription-PCR in deployed field laboratories. Nucleic acid mapping to Plasmodium was also used on the patient samples, confirming results obtained with an antigen-based rapid diagnostic test (RDT) conducted in the field laboratories. The data suggested that a high Plasmodium load, as determined by sequence read depth, was associated with mortality and influenced the host response, whereas a lower parasite load did not appear to affect outcome. The identifications of selected bacteria from throat swabs via RNA-seq were confirmed by culture. The data indicated that the potential pathogens identified in the blood samples were associated with translocation from the gut, suggesting the presence of bacteremia, which transcriptome data suggested may induce or aggravate the acute-phase response observed during EVD. Transcripts mapping to different viruses were also identified, including those indicative of lytic infections. The development of high-resolution analysis of samples from patients with EVD will help inform care pathways and the most appropriate general antimicrobial therapy to be used in a resource-poor setting. IMPORTANCE Our results highlight the identification of an array of pathogens in the blood of patients with Ebola virus disease (EVD). This has not been done before, and the data have important implications for the treatment of patients with EVD, particularly considering antibiotic stewardship. We show that EVD patients who were also infected with Plasmodium, particularly at higher loads, had more adverse outcomes than patients with lower levels of Plasmodium. However, the presence of Plasmodium did not influence the innate immune response, and it is likely that the presence of EBOV dominated this response. Several viruses other than EBOV were identified, and bacteria associated with sepsis were also identified. These findings were indicative of bacterial translocation across the gut during the acute phase of EVD
    corecore